Advances in Computer-Aided Flow Visualization

  • T. Kobayashi
Conference paper


Because of the value of computer aided flow visualization for quantitative measurement, it is already being used for a variety of research activities of both basic and applied engineering. Flow visualization image analysis supported by computers are divided into three branches; flow image analysis using digital image processing techniques, flow image production from the collected data of a probe measurements, and an animated graphics using computational fluid dynamics.

Some recent developments in flow field analysis are reviewed, with particular attention to particle-imaging velocimetry, computed tomography and computational fluid dynamics.


Computational Fluid Dynamic Large Eddy Simulation Flow Visualization Particle Tracking Velocimetry Compute Tomography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi, T.: Flow visualization image analysis review. Proc. FLUCOME’ 88 (1988) pp. 545–556.Google Scholar
  2. 2.
    Hesselink, I.: Digital image processing in flow visualization. Ann. Rev. Fluid Mech. (1988) pp. 421-485.Google Scholar
  3. 3.
    Adrian R. J.: Particle-imaging technique for experimental fluid mechanics. Ann. Rev. Fluid Mech. (1991) pp261-304.Google Scholar
  4. 4.
    Pitcher, E. J. (ed.):Science and engineering on supercomputers. Springer-Verlag (1990).Google Scholar
  5. 5.
    Fujii, K.: Supercomputers and workstations in fluid dynamic research. Visualization in Supercomputing (Mendez, R. H. ed.). Springer-Verlag (1990) pp. 3-13.Google Scholar
  6. 6.
    Akino, N.; Kunugi. T.; Shiina, Y.; Ichimiya, K.; Kurosawa, A.: Fundamental study on visualization of temperature fields using thermosensitive liquid-crystals. Flow Visualization 5. Hemisphere (1990) pp. 87–92.Google Scholar
  7. 7.
    Takeda, Y.: Velocity profile measurement by ultrasound doppler shift method. Int. J. Heat & Fluid Flow 7-4 (1986) pp. 313–318.CrossRefGoogle Scholar
  8. 8.
    Hibi, K.; Fujii, K.; Ueda, H.; Shimada, K.: Visualization of fluctuating surface pressure distribution on bluff body using electronically scanning pressure sensors. Flow Visualization 5. Hemisphere (1990) pp. 215–220.Google Scholar
  9. 9.
    Landreth, C. C.; Adrian, R. J.: Impingement of a low Reynolds number turbulent circular jet onto flat plate at normal incidence. Exp. in Fluids 9 (1990) pp. 74–84.CrossRefGoogle Scholar
  10. 10.
    Kawahashi, M.; Hosoi, K.: Dual-beam-sweep laser speckle velocimetry. Exp. in Fluids 11 (1991) pp. 278–289.CrossRefGoogle Scholar
  11. 11.
    Kobayashi, T.; Saga, T.; Haeno, T.; Tsuda, N.: Development of a real-time velocity measurement system for high Reynolds fluid flow using a digital image processing technique. ASME FED-128 (1991) pp. 9–14.Google Scholar
  12. 12.
    Kobayashi, T.; Saga, T.; Sekimoto, K.: Velocity measurement of three-dimensional flow around rotating parallel disks by digital image processing. ASME FED-85 (1989) pp. 29–36.Google Scholar
  13. 13.
    Nishino. K.; Kasagi. N.: Hirata, M.: Three-dimensional particle tracking velocimetry based on digital image processing. Trans. ASME-111 (1989) PP. 384–391.CrossRefGoogle Scholar
  14. 14.
    Mass, H. G.: A high-resolution photogrammetric 3-D particle tracking velocimeter. ASME FED-128 (1991) PP. 79–84.Google Scholar
  15. 15.
    Ni-imi, T.; Fujimoto. T.: Development of a CAFV system for gas dynamics (Synthesis of visualized picture at arbitrary cross sections). Flow Visualization 5. Hemisphere 1990 pp. 240–247.Google Scholar
  16. 16.
    Hijikata, K.; Mimatsu, J.; Inoue, J.: A study of wall pressure structure in backward step flow by a holographic/velocity-pressure cross-correlation visualization. ASME FED-128 (1991) pp. 61–68.Google Scholar
  17. 17.
    Watanabe, M.; Eguchi, M.: Kakimoto, K.; Hibiya. T.: Three-dimensional visualization of molten silicon convection. ASME FED-128 (1991) pp. 255–260.Google Scholar
  18. 18.
    Kobayashi, T.: Supercomputing of incompressible fluid flow. Supercomputing (Kondo, J. ed.). Springer-Verlag (1991) pp. 125-140.Google Scholar
  19. 19.
    Morinishi, Y.; Kobayashi, T.: Large eddy simulation of backward facing step flow. Elsevier Sci. Pub. (1991) pp. 279-286.Google Scholar
  20. 20.
    Komoriya, T,; Kobayashi, T.; Taniguchi, N.: Numerical simulation of the air flow around a driver. JSAE Spring Convention Proc. 1 (1992) pp. 25–28 (in Japanese).Google Scholar
  21. 21.
    Yamada, A.; Ito. S.; Okamoto, M.: Computational analysis of the flow around a car body. JSAE Spring Convention Proc. 1 (1992) pp. 13–16 (in Japanese).Google Scholar
  22. 22.
    Oshima, M.: A substructure method for large scale magneto-thermal-hydrodynamic flows. Doctor Thesis, Univ. of Tokyo (1991).Google Scholar
  23. 23.
    Akai, M.; Takahashi, S.: High speed x-ray tomography for multiphase flow visualization. Proc. 9th Task Leader Meting. IEA Working Party on Conservation in Combustion (1987).Google Scholar
  24. 24.
    Kobayashi, K.; Sakakibara, J.; Hishida. K.; Maeda, M.: Time-series measurements of turbulent flow field using image processing system. ASME FED-128 (1991) pp. 155–162.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • T. Kobayashi
    • 1
  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyo, 106Japan

Personalised recommendations