Advertisement

Electronic Structures of Fullerenes and Fullerides

  • S. Saito
  • A. Oshiyama
  • Y. Miyamoto
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 70)

Abstract

We report the electronic structures of Cho cluster, solid C60, K3 C60, and C60 Br obtained by the density-functional theory. The C60 cluster has a closed shell electronic structure with relatively large energy gap, and solid C60 becomes a semiconductor. K3 C60 is found to be an exotic ionic metal and have high density of states at the Fermi energy, which seems responsible for the observed superconductivity. On the other hand, the high electronegativity of C60 prevents hole injection in the valence band and instead the midgap state consisting of Br 4p state appears in C60Br.

Keywords

High Electronegativity Antibonding State Tetrahedral Interstitial Site Calculated Electronic Structure Midgap State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley: Nature 318, 162 (1985).CrossRefADSGoogle Scholar
  2. 2.
    W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman: Nature 347, 354 (1990).CrossRefADSGoogle Scholar
  3. 3.
    A. F. Hebard et al., Nature 350, 600 (1991).CrossRefADSGoogle Scholar
  4. 4.
    K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo and S. Kuroshima: Nature 352, 222 (1991).CrossRefADSGoogle Scholar
  5. 5.
    P. Hohenberg and W. Kohn: Phys. Rev. 136, B864 (1964);CrossRefADSMathSciNetGoogle Scholar
  6. W. Kohn and L. J. Sham: Phys. Rev. 140, A1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  7. 6.
    G. B. Bachelet, D. R. Hamann and M. Schlüter: Phys. Rev. B 26, 4199 (1982).CrossRefADSGoogle Scholar
  8. 7.
    Y. Miyamoto and A. Oshiyama: Phys. Rev. B 41, 12680 (1990).CrossRefADSGoogle Scholar
  9. 8.
    S. Saito and A. Oshiyama: Phys. Rev. Lett. 66, 2637 (1991).CrossRefADSGoogle Scholar
  10. 9.
    R. D. Johnson et al., in Clusters and Cluster-Assembled Materials, ed. R. S. Averback et al. (Mat. Res. Soc. Proc. 206, Pittsburgh, 1991) p.175.Google Scholar
  11. 10.
    S. Saito: in Clusters and Cluster-Assembled Materials (ref.9) p.115.Google Scholar
  12. 11.
    R. C. Haddon et al.: Nature 350, 320 (1991).CrossRefADSGoogle Scholar
  13. 12.
    P. W. Stephens et al.: Nature 351, 632 (1991).CrossRefADSGoogle Scholar
  14. 13.
    S. Saito and A. Oshiyama: Phys. Rev. B 44, 11 536 (1991).Google Scholar
  15. 14.
    K. Holczer et al.: Science 252, 1154 (1991);Google Scholar
  16. M. J. Rosseinsky et al.: Phys. Rev. Lett. 66, 2830 (1991).CrossRefADSGoogle Scholar
  17. 15.
    P. J. Benning et al., Science 252, 1417 (1991);CrossRefADSGoogle Scholar
  18. G. K. Wertheim et al., Science 252, 1419 (1991);CrossRefADSGoogle Scholar
  19. G. K. Wertheim et al., Science 252, 1419 (1991);CrossRefADSGoogle Scholar
  20. 16.
    N. Hamada, S. Saito, Y. Miyamoto, and A. Oshiyama, Jpn. J. Appl. Phys. 30, L2036 (1991).CrossRefADSGoogle Scholar
  21. 17.
    Y. Miyamoto, A. Oshiyama, and S. Saito: (to be published).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Saito
    • 1
  • A. Oshiyama
    • 1
  • Y. Miyamoto
    • 1
  1. 1.Fundamental Research Laboratories and Microelectronics Research LaboratoriesNEC CorporationMiyukigaoka, Tsukuba, Ibaraki 305Japan

Personalised recommendations