Numerical Calculations of S=1 Heisenberg Antiferromagnetic Chain

  • M. Takahashi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 70)


The properties of S = 1 Heisenberg antiferromagnetic chains are completely different with those of S = 1/2 Heisenberg antiferromagnetic chains. Numerical methods such as projector Monte Carlo method, world line Monte Carlo method and exact diagonalization method are very useful for the investigation of these systems.


Ground State Energy World Line Elementary Excitation Exact Diagonalization Variational Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J. des Cloiseaux and J.J. Pearson, Phys. Rev. 128 2131 (1962).CrossRefADSGoogle Scholar
  2. 2).
    E.H. Lieb, T. Schultz and D.J. Mattis, Ann. Phys. NY 16 407 (1961).CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3).
    F.D.M. Haldane, Phys. Rev. Lett. 50 1153 (1983);CrossRefADSMathSciNetGoogle Scholar
  4. F.D.M. Haldane, Phys. Lett. A 93 464 (1983).MathSciNetGoogle Scholar
  5. 4).
    J.B. Parkinson and J. Bonner, Phys. Rev. B 32 4703 (1985).CrossRefADSGoogle Scholar
  6. 5).
    M.P. Nightingale and H.W.J. Blöte, Phys. Rev. B 33 659 (1986).CrossRefADSGoogle Scholar
  7. 6).
    M. Takahashi, Phys. Rev. B 38 5188 (1988)CrossRefADSGoogle Scholar
  8. 7).
    K. Nomura, Phys. Rev. B 40 2421 (1989).CrossRefADSGoogle Scholar
  9. 8).
    M. Takahashi, Phys. Rev. Lett. 62 2313 (1989).CrossRefADSGoogle Scholar
  10. 9).
    W.J.L. Buyers, R.M. Morra, R.L. Armstrong, P. Gerlach and K. Hirakawa, Phys. Rev. Lett. 56 371 (1986).CrossRefADSGoogle Scholar
  11. 10).
    J.P. Renard M. Verdaguer, L.P. Regnault, W.A.C. Erkelens, J. Rossat-Mignod and W.G. Stirling, Europhys. Lett. 3 945 (1987).CrossRefADSGoogle Scholar
  12. 11).
    M. Barma and B.S. Shastry, Phys. Lett. 61A 15 (1977);CrossRefGoogle Scholar
  13. M. Barma and B.S. Shastry, Phys. Rev. B 18 3351 (1978).CrossRefADSGoogle Scholar
  14. J.E. Hirsch, R.L. Sugar, D.J. Scalapino and R. Blankenbecler, Phys. Rev. B 26 5033 (1982).CrossRefADSGoogle Scholar
  15. R. Blankenbecler and R.L. Sugar, Phys. Rev. D 27 1304 (1983).CrossRefADSGoogle Scholar
  16. K. Sogo and M. Uchinami, J. Phys. A 19 493 (1986).CrossRefADSGoogle Scholar
  17. M. Uchinami, Phys. Lett. A 127 151 (1988).CrossRefADSGoogle Scholar
  18. 12.
    J.H. Hetherington, Phys. Rev. A 30 2713 (1983).CrossRefADSMathSciNetGoogle Scholar
  19. K. Nomura and M. Takahashi, J. Phys. Soc. Jpn. 57 1424 (1988).CrossRefADSGoogle Scholar
  20. D.M. Ceperley and M.H. Kalos, Monte Carlo Methods in Statistical Physics, Edited by K. Binder ( Springer, Berlin, 1979 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Takahashi
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoMinato-ku, Tokyo 106Japan

Personalised recommendations