Anyons on a Lattice

  • Y. Hatsugai
  • M. Kohmoto
  • Y.-S. Wu
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 70)

Abstract

Anyons on the square lattice are studied numerically. We treat several different boundary conditions. These boundary conditions define different topological structures such as planc(plate), annulus (cylinder) and torus. To realize the system consistently, we start from a braid group analysis. The system is characterized not only by the anyon statistics θ but also by the magnetic fluxes Φx (and Φy) threading through the holes of the system. We generalize the construction to get a system where several species of anyons with θ=0, ±2π/q, ±4π/q,..., (π), exist simultaneously. Explicit numerical calculations are demonstrated.

References

  1. [1]
    F. Wilezek, Phys. Rev. Lett. 49, 957 (1982).Google Scholar
  2. [2]
    Y. S. Wu,. Rev. Lett. 52, 2103 (1984).CrossRefGoogle Scholar
  3. [3]
    B.I.Halperin, Phys. Rev. Lett. 52, 1583 (1984).CrossRefADSGoogle Scholar
  4. [4]
    R. B.Laughlin, Phy. Rev. Lett. 60, 2677 (1988).CrossRefADSGoogle Scholar
  5. [5]
    G.S.Canright, S.M.Girvin and A.Brass, Phy.Rev.Lett. 63, 2291 (1989); ibid. 2295 (1989).Google Scholar
  6. [6]
    X. G. Wen, E. Daggoto and E. Fradkin„ Phys. Rev. B42, 6110 (1990).CrossRefGoogle Scholar
  7. [7]
    Y. Hatsugai, M. Kohmoto and Y.S. Wu, Phys. Rev. B43, 2661 (1991); ibid., 10761, Y. S. Wu, Y. Hatsugai and M. Kohmoto, Phys. Rev. Lett 66, 659 (1991).Google Scholar
  8. [8]
    T. Einarsson, Phys. Rev. Lett. 64, 1995 (1990).Google Scholar
  9. [9]
    Y. Hatsugai, M. Kohmoto and Y. S. Wu, preprint, ISSP Ser. A 2456 August.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Y. Hatsugai
    • 1
  • M. Kohmoto
    • 1
  • Y.-S. Wu
    • 1
    • 2
  1. 1.Institute for Solid State PhysicsUniversity of TokyoMinato-ku, Tokyo 106Japan
  2. 2.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations