Skip to main content

Projection Monte Carlo Method and Choice of the Optimal Trial Wavefunction

  • Conference paper
Book cover Computational Approaches in Condensed-Matter Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 70))

  • 279 Accesses

Abstract

We present here a brief and schematic description of a quantum Monte Carlo method for fermions. The ground state of a many-body fermion system is achieved by propagating in imaginary time a properly chosen trial wavefunction. It is shown that use of a trial wavefunction of definite total spin can enormously improve the convergence in imaginary time in the half filled Hubbard model. Fluctuations of the staggered magnetization become very small in a subspace of definite spin and large scale simulations are possible at a little expense of computer time. The antiferromagnetic broken symmetry state which occurs at half filling is the main reason of this and the physical consequences on the interpretation of the Mott insulator are discussed. Application of the methodology just away from half filling is also possible because good convergence in imaginary time is reached before the fermion sign problem becomes relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sorella, S. Baroni, R. Car and M. Parrinello, Europhys. Lett. 8, 663 (1989).

    Article  ADS  Google Scholar 

  2. M. Imada and Y. Hatsugai J. Phys. Soc. Jpn. 58, 3752 (1989).

    Article  ADS  Google Scholar 

  3. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  ADS  Google Scholar 

  4. R. Blankenbecker, D.J. Scalapino and R.L. Sugar Phys. Rev. D 24, 2278 (1981).

    Article  ADS  Google Scholar 

  5. S. Sorella Int. J. Mod. Phys. B 5 937 (1991).

    ADS  MathSciNet  Google Scholar 

  6. E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, S.R. White, D.J. Scalapino, and R.J. Sugar Phys. Rev. B 41, 9391 (1990).

    Google Scholar 

  7. S.R. White, D. J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis and R.T. Scalettar Phys. Rev. B 40, 506 (1989).

    Article  ADS  Google Scholar 

  8. N. Furukawa and M. Imada J. Phys. Soc. Jpn. 60, 3669 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  9. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Gros, E. Sânches-Velasco, and E. Siggia, Phys. Rev. B39 2484 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sorella, S. (1992). Projection Monte Carlo Method and Choice of the Optimal Trial Wavefunction. In: Miyashita, S., Imada, M., Takayama, H. (eds) Computational Approaches in Condensed-Matter Physics. Springer Proceedings in Physics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84821-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84821-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84823-0

  • Online ISBN: 978-3-642-84821-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics