Electron Charge Distribution and Transport in Mesoscopic Systems

  • A. Kawabata
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 109)


We discuss the electronic transport in one-dimensional systems and show how the conductance at zero temperature is related to the electronic charge distribution, using an generalized form of Friedel sum rule. We apply the theory to the transport through a quantum dots. It is predicted that the transmission probability is unity when the dot has a magnetic moment of magnitude 1/2 due to an unpaired electron.


Total Spin Coulomb Repulsion Mesoscopic System Kondo Temperature Mesoscopic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Friedel, Phil. Mag. 43,153 (1952), Advance in Physics 3, 446 (1954).Google Scholar
  2. 2.
    A. Kawabata, J. Phys. Soc. Jpn. 60, 3222 (1991).CrossRefGoogle Scholar
  3. 3.
    A. Kawabata, Proc. Int. Symp. on Science and Technology of Mesoscopic Structures, Nara, 1991, ( Springer-Verlag, to be published).Google Scholar
  4. 4.
    H. Shiba, Prog.Theor. Phys. 54, 967 (1975).CrossRefGoogle Scholar
  5. 5.
    A. Yoshimori and A. Zawadowski, Phys. C (Solid State Physics) 15, 5241 (1982).CrossRefGoogle Scholar
  6. 6.
    R. Landauer, Z. Phys. B 68, 217 (1987), and references therein.CrossRefGoogle Scholar
  7. 7.
    J.S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).CrossRefGoogle Scholar
  8. 8.
    J. Kondo, Solid state physics vol.23., eds. F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, Press, New York, 1969), p. 183.Google Scholar
  9. 9.
    Note that ΔN is not the electron number in the dot, but the difference between the total electron numbers with and without the potential υ(x) in the regions where υ(x) ≠ 0.Google Scholar
  10. 10.
    T.K. Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988).CrossRefGoogle Scholar
  11. 11.
    L.I. Grazman and M.É. Raikh, JETP Lett. 47, 452 (1988).Google Scholar
  12. 12.
    Ph. Nozieres and A. Blandin, J. Physique, 41, 193 (1980).Google Scholar
  13. 13.
    In [4] and [5] the authors proved eq. (8) for the Anderson model, but, within the knowledge of the present author, it has not yet been proved for more general models.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. Kawabata
    • 1
  1. 1.Department of PhysicsGakushuin UniversityTokyo 171Japan

Personalised recommendations