Skip to main content

Spectral Correlations, Symmetry Breaking and Novel Orbital Magnetic Effects in Mesoscopics

  • Conference paper
Transport Phenomena in Mesoscopic Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 109))

Abstract

The quasiclassical picture yielding the correlations in the spectrum of an electron diffusing in a mesoscopic “quantum dot” is reviewed. This includes the range where random-matrix theory holds as well as the new universality class found by Altshuler and Shklovskii. Some generalizations are mentioned and the orthogonal-unitary symmetry crossover brought about by a magnetic field is treated. Using a recent thermodynamic relationship between the difference of derivatives of canonical and grand-canonical quantities and grand-canonical fluctuations, a new paramagnetic orbital contribution to the electronic susceptibility is obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example M.L. Mehta, Random Matrices (Academic, New York 1967). For the first discussion of the spectra of metallic particles see R. Kubo, J. Phys. Soc. Japan 17 975 (1962)

    Article  CAS  Google Scholar 

  2. B.L. Altshuler and B. Shklovskii: Soviet Phys. JETP 64, 127 (1986).

    Google Scholar 

  3. K.B. Efetov: Phys. Rev. Lett. 66, 2794 (1991)

    Article  Google Scholar 

  4. B.L. Altshuler, Y. Gefen and Y. Imry: Phys. Rev. Lett. 66, 88 (1991)

    Article  Google Scholar 

  5. O. Bohigas, M.J. Giannonni and C. Schmidt: Phys. Rev. Lett. 52, 1 (1984)

    Article  Google Scholar 

  6. M.V. Berry: Proc. Roy. Soc. London, Ser. a 400, 229 (1985)

    Article  CAS  Google Scholar 

  7. N. Argaman (Freed), U. Smilansky and Y. Imry: to be published

    Google Scholar 

  8. B.L. Altshuler, Y. Gefen, Y. Imry and G. Montambaux: In preparation

    Google Scholar 

  9. M.C. Gutzwiller: J. Math. Phys. 12, 343 (1971)

    Article  Google Scholar 

  10. J.H. Hannay and A.M. Ozorio de Almeida: J. Phys. A17 3429 (1984). In this work the classical sum rule was derived. The physical interpretation in terms of a probability was given by U. Smilansky, S. Tomsovic and O. Bohigas, WIS preprint, 1991 and in Ref. 7.

    Google Scholar 

  11. A.I. Larkin and D.E. Khmelnitskii: Usp. Fiz. Nauk 136 336 (1982) (Sov. Phys. Usp. 25, 185 (1982)); D.E. Khmelnitskii: Physica 126B, 235 (1984)

    Article  Google Scholar 

  12. G. Bergmann: Phys. Rep. 107, 1 (1984)

    Article  CAS  Google Scholar 

  13. S. Chakravarty and A. Schmid: Phys. Rep. 140, 193 (1986)

    Article  CAS  Google Scholar 

  14. B. Derrida and Y. Pomeau: Phys. Rev. Lett. 48, 627 (1982); Ya.G. Sinai: In Proc. 6th Int. Conf. on Mathematical Physics, Berlin 1981 (Springer, Berlin 1982)

    Article  Google Scholar 

  15. M. Buttiker, Y. Imry and R. Landauer: Phys. Lett. 96A, 365 (1983)

    Google Scholar 

  16. Y. Imry: In Proc. April 1989 NATO ASI on Coherence Effects in Condensed Matter, ed. by B. Kramer (Plenum, New York 1991)

    Google Scholar 

  17. H. Cheung, E.K. Riedel and Y. Gefen: Phys. Rev. Lett. 62, 587 (1989)

    Article  Google Scholar 

  18. V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher and A. Kleinsasser: Phys. Rev. Lett. 67 3578 (1991)

    Article  CAS  Google Scholar 

  19. L.P. Levy, G. Dolan, J. Dunsmuir and H. Bouchiat: Phys. Rev. Lett. 64, 2074 (1990)

    Article  CAS  Google Scholar 

  20. H. Bouchiat and G. Montambaux: J. Phys. (Paris) 50, 2695 (1989); G. Montambaux, H. Bouchiat, D. Sigeti and R. Friesner: Phys. Rev. B42, 7647 (1990)

    Article  Google Scholar 

  21. A. Schmid: Phys. Rev. Lett. 61, 80 (1991)

    Article  Google Scholar 

  22. A. Altland, S. Iida, A. Müller-Groeling and H. Weidenmüller: preprint (1991)

    Google Scholar 

  23. A. Pandey and M.L. Mehta: Commun. Math. Phys. 87, 449 (1983); N. Dupuis and G. Montambaux: Phys. Rev. B43, 14390 (1991)

    Article  Google Scholar 

  24. R. Kubo in Ref. 1

    Google Scholar 

  25. Note a sign error in Eq. (6) of Ref. 3, the similar result in Ref. 16 as well as the physical implications discussed in Ref. 3 are correct. The author thanks V. Ambegaokar for pointing out this error.

    Google Scholar 

  26. Note that (21) in an interval W is best evaluated as \(\left\langle {\Delta N^2 } \right\rangle = 2\int_0^W {X\left( \omega \right)d\omega } \) where \(X\left( \omega \right) = \int_0^\omega {K\left( \epsilon \right)d\epsilon } \). Were K(∈) a monotonic finite range function, X(ω) would be finite for large ω and 〈ΔN 2〉 would be “extensive”, i.e. of order W. The logarithmic character of 〈ΔN 2〉 in the RMT regime follows from a delicate cancellation of the “infrared” anomaly following from K(∈) ~ −∈−2, due to the change of sign [2] of K(∈) for ∈ ≲ γ. Related cancellations affect 〈ΔN 2〉 in the WE c regime too. It is the power law (in general) dependence of X(ω) on ω which causes the validity of (28) for a sharp change of K(∈) at ∈ ~ ωX

    Google Scholar 

  27. J.M. van Ruitenbeck and D.A. van Leeuwen: Phys. Rev. Lett. 67, 640 (1991); J.M. van Ruitenbeck, Z. Phys. D, in press.

    Article  Google Scholar 

  28. K. Kimura and S. Bandow, Phys. Rev. 37, 4473 (1988)

    CAS  Google Scholar 

  29. B.L. Altshuler, D.E. Khmelnitskii and B.Z. Spivak: Solid State Commun. 48, 841 (1983)

    Article  CAS  Google Scholar 

  30. V. Ambegaokar and U. Eckern: Phys. Rev. Lett. 65, 381 (1990); ibid 67, 3192 (1991) (comments)

    Article  Google Scholar 

  31. U. Eckern: Z. Phys. B82, 393 (1991)

    Article  Google Scholar 

  32. V. Ambegaokar and U. Eckern: Europhys. Lett. 13, 733 (1990)

    Article  CAS  Google Scholar 

  33. A. Schmid: Preprint (1991)

    Google Scholar 

  34. H. Schmidt: Z. Phys. 216, 336 (1968)

    Article  Google Scholar 

  35. A. Schmid: Phys. Rev. 180, 627 (1969)

    Article  Google Scholar 

  36. L.G. Aslamazov and A.I. Larkin, Zh. Exp. Teor. Fiz. 67, 647 (1974) [Sov. Phys. JETP 40, 321 (1975)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Imry, Y. (1992). Spectral Correlations, Symmetry Breaking and Novel Orbital Magnetic Effects in Mesoscopics. In: Fukuyama, H., Ando, T. (eds) Transport Phenomena in Mesoscopic Systems. Springer Series in Solid-State Sciences, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84818-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84818-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84820-9

  • Online ISBN: 978-3-642-84818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics