Past, Present, and Anticipated Applications of Clonal Forestry

  • J. Kleinschmit
  • D. K. Khurana
  • H. D. Gerhold
  • W. J. Libby


Trees are among the few natural resources that can be renewed, and the need for trees and the wood that they provide is continuing to increase with increases in world population and the striving of peoples to maintain or increase their standards of living. The supply of wood is threatened by overcutting in many regions, and in some areas the near-complete destruction of natural forests threatens other values. More intensive and aggressive forest management can improve the supply of wood and other forest products and values on existing forest land, and on marginal or abandoned farm land that can be afforested. Vegetative propagation and the appropriate deployment of clones can contribute considerably to increases in the productivity and effectiveness of such managed forests, of agroforestry ecosystems, of Christmas-tree farms, and of trees for landscape, urban and amenity uses. Interestingly, tree-breeding programs can become much more flexible when serving clonal forestry than when restricted to the production and deployment of seedlings (Libby and Rauter 1984).


Vegetative Propagation Urban Tree Poplar Clone Vegetative Propagule Urban Forestry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott AJ, Atkin RK (eds) (1987) Improving vegetatively propagated crops. Academic Press, New York London, 416 ppGoogle Scholar
  2. AFOCEL (1982) Meet In vitro propagation of forest tree species, Fontainebleau. AFOCEL, Nangis, Fr, 363 ppGoogle Scholar
  3. Burley J (1987) Strategies for genetic improvement of agroforestry trees. In: Khosla PK, Khurana DK (eds) Agroforestry for rural needs. Azad Hind, Chandigarh, India, pp 253–265Google Scholar
  4. Carson MJ (1986) Advantages of clonal forestry for Pinus radiata — real or imagined? NZ J For Sci 16:403–415Google Scholar
  5. Collins WH (1976) Nursery growing practices as related to selection and production of municipal trees. USDA For Serv Tech Rep NE-22:167–178Google Scholar
  6. Curtis HJ (1968) Das Altern. Die biologischen Vorgänge. Fischer, Stuttgart, 105 ppGoogle Scholar
  7. Dammann T (1988) Cloning the perfect tree. San Francisco Chron 27 Nov 88, Sunday Punch, p 5Google Scholar
  8. Deuber CG (1940) Vegetative propagation of conifers. Trans Conn Acad Arts Sci 34:1–83Google Scholar
  9. Deuber CG, Farrar JL (1940) Vegetative propagation of Norway spruce. J For 38:578–585Google Scholar
  10. Dunlap JM (1990) Genetic variation in natural populations of Populus trichocarpa from four river drainages in Washington. PhD Diss, Univ Washington, SeattleGoogle Scholar
  11. Eichholtz DA (1979) Adventive embryony in apple. Hortic Sci 14:699–700Google Scholar
  12. Fasoulas AC (1988) The honeycomb method of plant breeding. Altidjis, Thessaloniki, 167 ppGoogle Scholar
  13. Fröhlich HJ (1955) Untersuchungen über die autovegetative Vermehrung unserer Holzarten nach Anwendung von Wuchstoffen. Diss Univ Hannover-Münden, 133 ppGoogle Scholar
  14. Fröhlich HJ (1957) Technische Einrichtungen zur vegetativen Vermehrung von Waldbäumen. Gartenbauwissenschaft 22:288–296Google Scholar
  15. Fröhlich HJ (1959) Grundlagen und Voraussetzungen der autovegetativen Vermehrung. Silv Genet 8:48–58Google Scholar
  16. Fröhlich HJ (1961) Untersuchungen über das physiologische und morphologische Verhalten von Vegetatiwermehrungen verschiedener Laub-und Nadelbaumarten. Allg Forst Jagdz 132:39–58Google Scholar
  17. Gardner FE (1929) The relationship between tree age and rooting of cuttings. Proc Am Soc Hprtic Sci 26:101–104Google Scholar
  18. Gerhold HD (1986) Workshop on urban tree cultivars. Trip Report. USDA Off Int Coop Dev, Neth, 1–5, Sep, 13 ppGoogle Scholar
  19. Gerhold HD, Steiner KC (1976) Selection practices of municipal arborists. USDA For Serv Tech Rep NE-22:159–166Google Scholar
  20. Gerhold HD, Steiner KC, Cech FC, Karnosky D (1982) Genetic improvement and urban trees: a problem analysis for environmental forestry research. USDA For Serv NE/NA, 65 ppGoogle Scholar
  21. Grace NH (1937) Physiologic curve of response to phytohormones by seeds, growing plants, cuttings and lower plant forms. Can J Res Sec C15:538–546CrossRefGoogle Scholar
  22. Griffith BG (1940) Effect of indolebutyric acid, indoleacetic acid, and alpha-napthalene acetic acid on rooting of cuttings of Douglas-fir and Sitka spruce. J For 38:496–501Google Scholar
  23. Guzina V (1981) Danasnje stanje oplemenjivanja crnih topola kod NAS Sumarski Inst, Jastre-barsko, Radovi 44:103–117 (in Yugoslavian)Google Scholar
  24. Harper JL (1977) Population biology of plants. Academic Press, New York London, 778 ppGoogle Scholar
  25. Heitmüller HH (1951) Beiträge zur vegetativen Vermehrung der Waldbäume. Diss, Univ Hannover-Münden, 120 ppGoogle Scholar
  26. IUFRO (1974) Proc IUFRO Meet Vegetative propagation, Rotorua, NZ. NZ J For Sci 4:120–158Google Scholar
  27. IUFRO (1982) Meet Breeding strategies including multiclonal varieties, Sensenstein, FRG. Dep For Tree Breed, Lower Saxony For Res Inst Escherode, 238 ppGoogle Scholar
  28. Jörgensen J (1989) Somatic embryogenesis in Aesculus hippocastanum L. by culture of filament callus. J Plant Physiol 135:240–241Google Scholar
  29. Khosla PK, Khurana DK (1987) Agroforestry for rural needs. Indian Soc Tree Sci, Azad Hind, Chandigarh, India, 363 ppGoogle Scholar
  30. Kleinschmit J, Müller W, Schmidt J, Racz J (1973) Entwicklung der Stecklingsvermehrung von Fichte (Picea abies Karst.) zur Praxisreife. Silv Genet 22:4–15Google Scholar
  31. Kleinschmit R (1957) Stecklingsvermehrung in Wasserkultur. Silv Genet 6:152Google Scholar
  32. Kleinschmit R (1958) Nadelholzstecklinge. Forst Holzwirtsch 13:347Google Scholar
  33. Kleinschmit R (1961) Versuche mit Fichtenstecklingen für einen genetischen Test. Silv Genet 10:10Google Scholar
  34. Kleinschmit R, Fröhlich HJ (1956) Stecklingsvermehrung in automatisch gesteuerter Wassenkultur. Forstarchiv 27:149Google Scholar
  35. Knowles RL, Percival NS (1983) Combinations of Pinus radiata and pastoral agriculture on New Zealand hill country: Forestry productivity and economics. In: Hathaway DB (ed) Foothills for food and forest. Timber, Beaverton, Or (also Or State Univ School Agric Symp Ser 2), pp 203–218 (383 pp)Google Scholar
  36. Leakey RRB (1987) Clonal forestry in the tropics — a review of developments, strategies and opportunities. Comm For Rev 66:61–75Google Scholar
  37. Li H-L (1963) The origin and cultivation of shade and ornamental trees. Univ Penn Press, Philadelphia, 282 ppGoogle Scholar
  38. Libby WJ (1982) What is a safe number of clones per plantation? In: Heybroek HM, Stephen BR, von Weissenberg K (eds) Resistance to diseases and pests in forest trees. Purdoc, Wageningen, pp 342–360 (503 pp)Google Scholar
  39. Libby WJ (1987a) Testing and deployment of genetically engineered trees. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 1, Chap. 11. Nijhoff Junk, The Hague, pp 167–197 (422 pp)Google Scholar
  40. Libby WJ (1987b) Testing for clonal forestry. Annales Forestales 13/1–2:69–74Google Scholar
  41. Libby WJ (1990) Advantages of clonal forestry revisited. In: Proc Joint Meet W. For Gen Assoc; and IUFRO Working Parties S2.02–05, − 06, − 12, 14. Olympia Wa, Aug 1990. Weyerhaeuser, Tacoma, Wa, Sec. 5.18, 13 ppGoogle Scholar
  42. Libby WJ, Rauter RM (1984) Advantages of clonal forestry. For Chron 60(3): 145–149Google Scholar
  43. Libby WJ, Fanger-Vexier MA, Russell JH (1985) Variation among Monterey pines of known genetic origins. Cal Christmas Tree Growers Bull 124:6–10Google Scholar
  44. Martin B (1987) Amélioration génétique des Eucalyptus tropicaux. Contribution majeure à la foresterie clonale. Thesis, Univ Paris Sud, Centre d’Orsay, 218 ppGoogle Scholar
  45. Mathias PJ (1988) Micropropagation of the tropical hardwoods, Khaya ivorensis and Nauclea diderrichii. PhD Diss, Univ Nottingham, 312 ppGoogle Scholar
  46. McArdle AJ, Santamour FS Jr (1984) Checklists of cultivars of European ash (Fraxinus) species. J Arboric 10:21–32Google Scholar
  47. McArdle AJ, Santamour FS Jr (1987a) Cultivar checklist of white oak species (excl. Quereus robur L.). J Arboric 13:203–208Google Scholar
  48. McArdle AJ, Santamour FS Jr (1987b) Cultivar checklist of Quereus (excl. subg. Quereus) J Arboric 13:250–256Google Scholar
  49. Meier-Dinkel A, Kleinschmit J (1989) Aging in tree species: present knowledge. In: Adv Stud Inst Molecular basis of plant aging, Ribadesella, Spain, 25 June-8 July, 13 ppGoogle Scholar
  50. Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet Sauvignon) by apomixis in vitro. J Exp Bot 27(100): 1022–1030CrossRefGoogle Scholar
  51. Pfifferling (1830) Erfahrungen über die Nachzucht der Fichte durch Steckreiser. N Jahrb Forstk 7:54–62Google Scholar
  52. Plinius GG (76AD) Naturgeschichte (Translation of Christian Lebrecht Strack) (1853-1855) XVII Buch, Ab 13, Pkt 21, Bremen. Heransgegeben 1968, Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  53. Pryor LD, Willing RR (1965) The development of poplar clones suited to low latitudes. Silv Genet 14:123–127Google Scholar
  54. Reid R, Wilson G (1985) Agroforestry in Australia and New Zealand. Goddard & Dobson, Victoria, 223 ppGoogle Scholar
  55. Ruden T (1965) Stecklingsvermehrung von Fichten. In: Vortragsr 2. Symp Industriellet Pflanzenbau, Wien, pp 133–137Google Scholar
  56. Santamour FS Jr, McArdle AJ (1982a) Checklist of cultivated maples I. Acer rubrum L. J Arboric 8:110–112Google Scholar
  57. Santamour FS Jr, McArdle AJ (1982b) Checklist of cultivated maples II. Acer saccharum Marshall J Arboric 8:164–167Google Scholar
  58. Santamour FS Jr, McArdle AJ (1982c) Checklist of cultivated maples III. Acer platanoides L. J Arboric 8:241–246Google Scholar
  59. Santamour FS Jr, McArdle AJ (1982d) Checklist of cultivated maples IV. Acer saccharinum L. J Arboric 8:277–280Google Scholar
  60. Santamour FS Jr, McArdle AJ (1983a) Checklist of cultivars of Callery pear (Pyrus callery ana). J Arboric 9:114–116Google Scholar
  61. Santamour FS Jr, McArdle AJ (1983b) Checklist of cultivars of honeylocust (Gleditsia triacanthos L.). J Arboric 9:248–252Google Scholar
  62. Santamour FS Jr, McArdle AJ. (1983c) Checklist of cultivars of North American ash (Fraxinus) species. J Arboric 9:271–276Google Scholar
  63. Santamour FS Jr, McArdle AJ (1984) Cultivar checklist for Liquidambar and Liriodendron. J Arboric 10:309–312Google Scholar
  64. Santamour FS Jr, McArdle AJ (1985a) Cultivar checklists of the large-bracted dogwoods: Cornus florida, C. kousa, and C. nuttalli. J Arboric 11:29–36Google Scholar
  65. Santamour FS Jr, McArdle AJ (1985b) Checklists of cultivars of linden (Tilia) species. J Arboric 11:157–164Google Scholar
  66. Santamour FS Jr, McArdle AJ (1986) Checklist of cultivated Platanus (plane tree). J Arboric 12:78–83Google Scholar
  67. Santamour FS Jr, He S-A, McArdle AJ (1983) Checklist of cultivated ginkgo. J Arboric 9:88–92Google Scholar
  68. Schreiner EJ (1938) Forest tree breeding techniques. J for 36:712–715Google Scholar
  69. Schreiner EJ (1970) Genetics of eastern cottonwood. For Serv Res Pap USDA WO-11, 32 ppGoogle Scholar
  70. Snow AG (1938) Use of indolebutyric acid to stimulate the rooting of dormant aspen cuttings. J for 36:582–587Google Scholar
  71. Swedish (1976) Breeding Norway spruce. Dep For Genet, Swed Coll For, Stockholm Bogesund, 205 ppGoogle Scholar
  72. Swedish (1977) Vegetative propagation of forest trees — physiology and practice. Inst For Improv; and Dep For Genet, Swedish Univ Agric Sci, Uppsala, 159 ppGoogle Scholar
  73. Swedish (1981) Symposium on clonal forestry. Sver Lantbruksuniv, Dep For Genet Uppsala. Swed Univ Agric Sci Res Note 32:131 ppGoogle Scholar
  74. Symposium (1976) Symp Juvenility in woody perennials, College Park/Berlin. Acta Hortic 59:1–317Google Scholar
  75. Thimann KV, Delisle AL (1939) The vegetative propagation of difficult plants. J Arnold Arb 20:116–231Google Scholar
  76. Wandell WN (1989) Handbook of landscape tree cultivars. East Prairie, Gladstone, II, 313 ppGoogle Scholar
  77. Ware GH (1989) Trees for restricted spaces. Metropol Tree Improv Alliance Proc 6:80–85Google Scholar
  78. Zagory D, Libby WJ (1985) Maturation-related resistance of radiata pine to western gall rust. Phytopathology 75:1443–1447CrossRefGoogle Scholar
  79. Zobel B (1985) Vegetative propagation in Eucalyptus. In: Zsuffa L, Rauter RM, Yeatman CW (eds) Clonal forestry: its impact on tree improvement and future forests. Proc 19th Meet Can Tree Improv Assoc, pt 2, Toronto, pp 136–144 (235 pp)Google Scholar
  80. Zobel B, Talbert J (1984) Applied forest tree improvement. John Wiley & Sons, New York, 505 ppGoogle Scholar
  81. Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon, Oxford, 249 ppGoogle Scholar
  82. Zsuffa L, Rauter RM, Yeatman CW (eds) (1985) Clonal forestry: its impact on tree improvement and future forests. Proc 19th Meet Can Tree Improv Assoc, Pt 2, Toronto, 235 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Kleinschmit
    • 1
  • D. K. Khurana
    • 2
  • H. D. Gerhold
    • 3
  • W. J. Libby
    • 4
  1. 1.Department of Forest Tree BreedingLower Saxony Forestry Research InstituteEscherodeGermany
  2. 2.Department of Tree BreedingUniversity of Horticulture & ForestryNauni, Solan (Himachal Pradesh)India
  3. 3.School of Forest ResourcesPenn State UniversityUniversity ParkUSA
  4. 4.Department of Forestry and Resource ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations