New Scanning Microscopy Techniques: Scanning Noise Microscopy Scanning Tunneling Microscopy Assisted by Surface Plasmons

  • R. Möller
Conference paper
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)


The present paper will be divided into two sections: In the first part the principle of the scanning noise microscopy i.e. the combination with potentiometry will be discussed. The second part will describe the investigation of the interaction of surface plasmons with the tunneling process of electrons.

The analysis of the current noise in scanning tunneling microscopy experiments reveals that at zero bias white thermal noise is observed. Its amplitude is given by the Nyquist formula for the tunneling resistance. Since the latter depends exponentially from the gap distance it is possible to operate a scanning tunneling microscope at exactly zero bias between sample and tunneling tip. The electronic feedback for the gap distance maintains a constant current noise instead of operating at constant direct current. Tests on a polycrystalline silver surface show that the obtained resolution is comparable to the one in conventional STM. As already a minor deviation from zero bias between tunneling tip and sample surface leads to a significant dc-component of the average current scanning noise microscopy can be very well combined with potentiometry. For any point on the sample the potential can be accurately measured by adjusting the potential such that the dc-component of the average tunneling current vanishes. The resolution obtained in our experiment is in the order of 1 µV.

The influence of surface plasmons excited in a polycrystalline silver film on the tunneling current of a scanning tunneling microscope has been analyzed. The plasmons cause an additional flow of electrons from the tungsten tip to the silver surface on the order of up to 50 pA. This process is independent of the polarity of the applied bias voltage, thereby excluding effects of thermal expansion. The different nature of the ordinary tunneling current and the surface plasmon induced current is clearly revealed by their different dependence on the gap distance. The local distribution of the intensity of the surface plasmon induced signal reveals structures on a nanometer scale.


Tunneling Current Current Noise Silver Film Silver Surface Distance Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Park, C.F. Quate, Appi. Phys. Lett. 48,112 (1986) E. Stoll, O. Marti, Surf. Sci. 181, 222 (1987)Google Scholar
  2. 2.
    D.W. Abraham, C.C. Williams, H.K. Wickramasinghe, Appi. Phys. Lett. 53, 1503 (1988)CrossRefGoogle Scholar
  3. 3.
    R. Möller, A. Esslinger, B. Koslowski, J. Vac. Sci. Technol. A8, 590 (1990)Google Scholar
  4. 4.
    R. Möller, A. Esslinger, B. Koslowski, Appi. Phys. Lett. 55, 2360 (1989)Google Scholar
  5. 5.
    H.E. Farnsworth, R.P. Winch, Phys. Rev., 58, 812 (1940)CrossRefGoogle Scholar
  6. 6.
    P. Muralt, D.W. Pohl, Appi. Phys. Lett. 48,514(1986)CrossRefGoogle Scholar
  7. P. Muralt, H. Meier, D.W. Pohl, H.W.M. Salemink, Appi. Phys. Lett. 50, 1352 (1987)CrossRefGoogle Scholar
  8. 7.
    J. Kirtley, S. Washburn, M.J. Brady, Phys. Rev. Lett. 60, 1546(1988) J.P. Pelz, R.H. Koch, Rev. Sei. Instrum. 60,301(1989)Google Scholar
  9. 8.
    J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe, Nature 342, 783 (1989)CrossRefGoogle Scholar
  10. 9.
    H.K. Wickramasinghe, IBM Europe Institute, Garmisch Partenkirchen, August 14–18, 1989Google Scholar
  11. 10.
    N.M.Amer, A.Skumanich, D.Ripplc, Appl.Phys.Lett. 49, 137 (1986)CrossRefGoogle Scholar
  12. 11.
    P.H.Cutler, T.E.Feuchtwang, T.T.Tsong, H.Nguyen, A.A.Lucas, Phys.Rev. B35, 7774 (1987)CrossRefGoogle Scholar
  13. 12.
    W.Krieger, T.Suzuki, M.Völcker, H.Walther, Phys.Rev. B41, 10229 (1990)Google Scholar
  14. 13.
    L.Arnold, W.Krieger, H.Walther, Appl.Phys.Lett. 51, 786 (1987)CrossRefGoogle Scholar
  15. 14.
    R.J. Hamers, K. Markert, Phys. Rev. Lett. 64, 1051 (1990)CrossRefGoogle Scholar
  16. Y. Kuk, R.S. Becker, P.J. Silvermann,G.P.Kochanski,Phys. Rev. Lett. 65, 456Google Scholar
  17. 15.
    J.K.Gimzewski, J.Sass, R.R.Schlittler, J.Schott, Europhys.Lett. 8, 435 (1989)CrossRefGoogle Scholar
  18. 16.
    R.Berndt, A.Baratoff, J.K.Gimzewski, Proceedings of the NATO Meeting held in Erice, Italy, April 17–29,1989(Kluwer Academic Publishers)Google Scholar
  19. 17.
    D.L. Abraham, A. Veider, Ch. Schònenberger, H.P. Meier, D.J. Arent, and S.F. Alvarado, Appi. Phys. Lett. 56, 1564 (1990)CrossRefGoogle Scholar
  20. 18.
    see e.g. H.Metiu, Progr.Surf.Sci.17, 153(1984), M.Moskovits, Rev.Mod.Phys.57,783(1985), A.Otto et al., Surf.Sci. 210, 363 (1989)CrossRefGoogle Scholar
  21. 19.
    R.Moller. A.Esslinger, M.Rauscher, J.Vac.Sci.Technol. A8. 434 (1990)CrossRefGoogle Scholar
  22. 20.
    E.Kretschmann, H.Raether, Z.Naturforsch. A23, 2135 (1968)Google Scholar
  23. 21.
    A.Tagliacozzo, E. Tosatti, “Tunneling with coupling to a surface phonon or plasmon”, Proceedings of the Adriatico Research Conference on “Scanning Tunneling Microscopy”, July 28–31, 1987Google Scholar

Copyright information

© ECSC-EEC-EAEC, Brussels-Luxembourg 1992

Authors and Affiliations

  • R. Möller
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations