Skip to main content

New Scanning Microscopy Techniques: Scanning Noise Microscopy Scanning Tunneling Microscopy Assisted by Surface Plasmons

  • Conference paper
Scanning Microscopy

Part of the book series: ESPRIT Basic Research Series ((ESPRIT BASIC))

  • 58 Accesses

Abstract

The present paper will be divided into two sections: In the first part the principle of the scanning noise microscopy i.e. the combination with potentiometry will be discussed. The second part will describe the investigation of the interaction of surface plasmons with the tunneling process of electrons.

The analysis of the current noise in scanning tunneling microscopy experiments reveals that at zero bias white thermal noise is observed. Its amplitude is given by the Nyquist formula for the tunneling resistance. Since the latter depends exponentially from the gap distance it is possible to operate a scanning tunneling microscope at exactly zero bias between sample and tunneling tip. The electronic feedback for the gap distance maintains a constant current noise instead of operating at constant direct current. Tests on a polycrystalline silver surface show that the obtained resolution is comparable to the one in conventional STM. As already a minor deviation from zero bias between tunneling tip and sample surface leads to a significant dc-component of the average current scanning noise microscopy can be very well combined with potentiometry. For any point on the sample the potential can be accurately measured by adjusting the potential such that the dc-component of the average tunneling current vanishes. The resolution obtained in our experiment is in the order of 1 µV.

The influence of surface plasmons excited in a polycrystalline silver film on the tunneling current of a scanning tunneling microscope has been analyzed. The plasmons cause an additional flow of electrons from the tungsten tip to the silver surface on the order of up to 50 pA. This process is independent of the polarity of the applied bias voltage, thereby excluding effects of thermal expansion. The different nature of the ordinary tunneling current and the surface plasmon induced current is clearly revealed by their different dependence on the gap distance. The local distribution of the intensity of the surface plasmon induced signal reveals structures on a nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Park, C.F. Quate, Appi. Phys. Lett. 48,112 (1986) E. Stoll, O. Marti, Surf. Sci. 181, 222 (1987)

    Google Scholar 

  2. D.W. Abraham, C.C. Williams, H.K. Wickramasinghe, Appi. Phys. Lett. 53, 1503 (1988)

    Article  Google Scholar 

  3. R. Möller, A. Esslinger, B. Koslowski, J. Vac. Sci. Technol. A8, 590 (1990)

    Google Scholar 

  4. R. Möller, A. Esslinger, B. Koslowski, Appi. Phys. Lett. 55, 2360 (1989)

    Google Scholar 

  5. H.E. Farnsworth, R.P. Winch, Phys. Rev., 58, 812 (1940)

    Article  Google Scholar 

  6. P. Muralt, D.W. Pohl, Appi. Phys. Lett. 48,514(1986)

    Article  Google Scholar 

  7. P. Muralt, H. Meier, D.W. Pohl, H.W.M. Salemink, Appi. Phys. Lett. 50, 1352 (1987)

    Article  Google Scholar 

  8. J. Kirtley, S. Washburn, M.J. Brady, Phys. Rev. Lett. 60, 1546(1988) J.P. Pelz, R.H. Koch, Rev. Sei. Instrum. 60,301(1989)

    Google Scholar 

  9. J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe, Nature 342, 783 (1989)

    Article  Google Scholar 

  10. H.K. Wickramasinghe, IBM Europe Institute, Garmisch Partenkirchen, August 14–18, 1989

    Google Scholar 

  11. N.M.Amer, A.Skumanich, D.Ripplc, Appl.Phys.Lett. 49, 137 (1986)

    Article  Google Scholar 

  12. P.H.Cutler, T.E.Feuchtwang, T.T.Tsong, H.Nguyen, A.A.Lucas, Phys.Rev. B35, 7774 (1987)

    Article  Google Scholar 

  13. W.Krieger, T.Suzuki, M.Völcker, H.Walther, Phys.Rev. B41, 10229 (1990)

    Google Scholar 

  14. L.Arnold, W.Krieger, H.Walther, Appl.Phys.Lett. 51, 786 (1987)

    Article  Google Scholar 

  15. R.J. Hamers, K. Markert, Phys. Rev. Lett. 64, 1051 (1990)

    Article  Google Scholar 

  16. Y. Kuk, R.S. Becker, P.J. Silvermann,G.P.Kochanski,Phys. Rev. Lett. 65, 456

    Google Scholar 

  17. J.K.Gimzewski, J.Sass, R.R.Schlittler, J.Schott, Europhys.Lett. 8, 435 (1989)

    Article  Google Scholar 

  18. R.Berndt, A.Baratoff, J.K.Gimzewski, Proceedings of the NATO Meeting held in Erice, Italy, April 17–29,1989(Kluwer Academic Publishers)

    Google Scholar 

  19. D.L. Abraham, A. Veider, Ch. Schònenberger, H.P. Meier, D.J. Arent, and S.F. Alvarado, Appi. Phys. Lett. 56, 1564 (1990)

    Article  Google Scholar 

  20. see e.g. H.Metiu, Progr.Surf.Sci.17, 153(1984), M.Moskovits, Rev.Mod.Phys.57,783(1985), A.Otto et al., Surf.Sci. 210, 363 (1989)

    Article  Google Scholar 

  21. R.Moller. A.Esslinger, M.Rauscher, J.Vac.Sci.Technol. A8. 434 (1990)

    Article  Google Scholar 

  22. E.Kretschmann, H.Raether, Z.Naturforsch. A23, 2135 (1968)

    Google Scholar 

  23. A.Tagliacozzo, E. Tosatti, “Tunneling with coupling to a surface phonon or plasmon”, Proceedings of the Adriatico Research Conference on “Scanning Tunneling Microscopy”, July 28–31, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 ECSC-EEC-EAEC, Brussels-Luxembourg

About this paper

Cite this paper

Möller, R. (1992). New Scanning Microscopy Techniques: Scanning Noise Microscopy Scanning Tunneling Microscopy Assisted by Surface Plasmons. In: Kassing, R. (eds) Scanning Microscopy. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84810-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84810-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84812-4

  • Online ISBN: 978-3-642-84810-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics