Advertisement

Gamma-Ray Irradiation Effects on Cubic Silicon Carbide Metal-Oxide-Semiconductor Structure

  • M. Yoshikawa
  • Y. Morita
  • H. Itoh
  • I. Nashiyama
  • S. Misawa
  • H. Okumura
  • S. Yoshida
Part of the Springer Proceedings in Physics book series (SPPHY, volume 71)

Abstract

Gamma-ray irradiation effects on cubic silicon carbide (3C-SiC) metal-oxide-semiconductor (MOS) structures have been studied with high frequency capacitance-voltage measurements. Using Termann analysis to determine the densities of interface traps and oxide traps, we found a 2/3 power law dependence of the radiation-induced traps on the absorbed dose. The generation of these traps was found to depend on bias during irradiation, similar to those of Si MOS devices. We also compared the radiation response of dry and pyrogenic oxides on 3C-SiC with that of dry oxides of Si, and showed less trapping in pyrogenic 3C-SiC oxides.

Keywords

Si02 Layer Interface Trap Oxide Trap Crystalline Silicon Carbide Applied Electric Field Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nishino, J.A. Powell, and H.A. Will, Appl. Phys. Lett., 42,460(1983).CrossRefADSGoogle Scholar
  2. 2.
    M. Shinohara, M.Yamanaka, H. Daimon, E. Sakuma, H. Okumura, S. Misawa, K. Endo, and S.Yoshida, Jpn. J. Appl. Phys., 27, L434(1988).Google Scholar
  3. 3.
    I. Nashiyama, M. Shinohara, T. Matsumoto, K. Endo, E. Sakuma, S. Misawa, H. Okumura, and S. Yoshida, Amorphous and Crystalline Silicon Carbide (Springer-Verlag, Berlin, 1989), pl23.Google Scholar
  4. 4.
    M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, and S. Yoshida, J. Appl. Phys., 61, 599 (1987).CrossRefADSGoogle Scholar
  5. 5.
    F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry. (Wiley-Interscience, New York, 1984 ), Vol 11, Chap. 4 p61.Google Scholar
  6. 6.
    K. Shibahara, S. Nishino, and H. Matsunami, Jpn. J. Appl. Phys., 23, L862(1984)Google Scholar
  7. 7.
    I.M. Termann, Solid-State Electron. 5, 285 (1962)CrossRefADSGoogle Scholar
  8. 8.
    P.J. McWhorter and P.S. Winokur, Appl. Phys. Lett., 48, 133 (1986)CrossRefADSGoogle Scholar
  9. 9.
    P.M. Lenahan and P.V. Dressendorfer, J. Appl. Phys., 55, 3495 (1984)Google Scholar
  10. 10.
    J.R. Srour,Tutorial Short Course IEEE 1983 Nuclear and Space Radiation Effects Conference, (Gatlinburg, Tennessee, 1983 ), Chap. 2, pl3Google Scholar
  11. 11.
    F.B. McLean, IEEE.Trans.Nucl.Sci., NS-27, 1651(1980).CrossRefADSGoogle Scholar
  12. 12.
    P.S. Winokur, H.E. Boesch. Jr., J.M. MaGarrity, and F.B. McLean. IEEE.Trans.Nucl.Sci., NS-24, 2113(1977).CrossRefGoogle Scholar
  13. 13.
    F.B. McLean, IEEE Trans. Nucl. Sci. NS-27, 1651(1980).CrossRefADSGoogle Scholar
  14. 14.
    H.S. Witham and P.M. Lenahan, IEEE. Trans. Nucl. Sci., NS-34, 1147(1987).CrossRefADSGoogle Scholar
  15. 15.
    K. Naruke, M. Yoshida, K. Maeguchi and H. Tango, IEEE.Trans.Nucl.Sci., NS-30, 4054(1983)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Yoshikawa
    • 1
  • Y. Morita
    • 1
  • H. Itoh
    • 1
  • I. Nashiyama
    • 2
  • S. Misawa
    • 2
  • H. Okumura
    • 2
  • S. Yoshida
    • 2
  1. 1.Japan Atomic Energy Research InstituteTakasaki, Gunma 370-12Japan
  2. 2.Electrotechnical LaboratoryTukuba, Ibaraki 305Japan

Personalised recommendations