Low Temperature Homoepitaxial Growth of 6H-SiC by VPE Method

  • T. Kimoto
  • H. Nishino
  • A. Yamashita
  • W. S. Yoo
  • H. Matsunami
Part of the Springer Proceedings in Physics book series (SPPHY, volume 71)


Crystal growth of SiC on off-oriented 6H- SiC{0001} and 6H-SiC{01\(\bar 1\)4} substrates was carried out at low temperatures of 1000–1500°C. Homoepitaxial growth of 6H-SiC is achieved at a temperature as low as 1200°C governed by step-flowgrowth on off-oriented {0001} faces and at 1100°C on (0\(\bar 1\)1\(\bar 4\))C faces. The activation energy of growth rate shows a very small value of 3.0kcal/mole. This can be quantitatively analyzed on the basis of a stagnant layer model in which crystal growth is controlled by diffusion of reactants in a stagnant layer.


Atomic Step Grown Layer Hexagonal Unit Cell RHEED Pattern Stagnant Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Kuroda, K. Shibahara, W. S. Yoo, S. Nishino and H. Matsunami; Extended Abstracts of the 19th Conf. on Solid State Devices and Materials, Tokyo(1987), p227.Google Scholar
  2. [2]
    K. Shibahara, N. Kuroda, S. Nishino and H. Matsunami; Jpn. J. Appl. Phys., 26 (1987), L1815.CrossRefADSGoogle Scholar
  3. [3]
    T. Ueda, H. Nishino and H. Matsunami; J. Cryst. Growth, 104 (1990), 695.CrossRefADSGoogle Scholar
  4. [4]
    H. Matsunami, T. Ueda and H. Nishino; Mat. Res. Soc. Symp. Proc., vol. 162 (1990), 397.CrossRefGoogle Scholar
  5. [5]
    H. S. Kong, J. T. Glass and R. F. Davis; J. Appl. Phys., 64 (1988), 2672.Google Scholar
  6. [6]
    J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang and P. Pirouz; Appl. Phys. Lett., 56 (1990), 1442.Google Scholar
  7. [7]
    T. Tachibana, H. S.Kong, Y. C.Wang and R. F.Davis; J. Appl. Phys., 67 (1990), 6375.CrossRefADSGoogle Scholar
  8. [8]
    Y. C.Wang, R. F.Davis and J. A. Edmond; J. Electron. Mat., 20 (1991), 289.CrossRefADSGoogle Scholar
  9. [9]
    W. S.Yoo, S. Nishino and H. Matsunami; J. Cryst. Growth, 99 (1990), 278.CrossRefADSGoogle Scholar
  10. [10]
    W. S.Yoo, A. Yamashita, T. Kimoto and H. Matsunami; J. Cryst. Growth, (1991), in press.Google Scholar
  11. [11]
    W. S.Yoo and H. Matsunami; J. Appl. Phys., in press.Google Scholar
  12. [12]
    A. Yamashita, W. S.Yoo, T. Kimoto and H. Matsunami; to be submitted.Google Scholar
  13. [13]
    B. Wessels, H. C. Gatos and A. F. Witt; Silicon Carbide 1973, edited by R. C. Marshall, J. W. Faust,Jr. and C. E. Ryen(University of South Carolina Press, 1974 ), p25.Google Scholar
  14. [14]
    V. J. Jennings, A. Sommer and H. C. Chang; J. Electro- chem. Soc., 113 (1966), 728.CrossRefGoogle Scholar
  15. [15]
    W. v. Muench and I. Pfaffeneder; Thin Solid Films, 31 (1976), 39.CrossRefADSGoogle Scholar
  16. [16]
    S. Nishino, H. Matsunami and T. Tanaka; J. Cryst. Growth, 45 (1978), 144.CrossRefADSGoogle Scholar
  17. [17]
    F. C. Eversteyn, P. J. W.Severin, C. H. J. v. d. Brekel and H. L. Peek; J. Electrochem. Soc., 117 (1970), 925.Google Scholar
  18. [18]
    T. Kimoto, H. Nishino, T. Ueda, A. Yamashita, W. S. Yoo and H. Matsunami; to be submitted.Google Scholar
  19. [19]
    Handbook of Chemistry and Physics, edited by R.C.Weast(CRC Press, 1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • T. Kimoto
    • 1
  • H. Nishino
    • 1
  • A. Yamashita
    • 1
  • W. S. Yoo
    • 1
  • H. Matsunami
    • 1
  1. 1.Department of Electrical EngineeringKyoto UniversitySakyo, Kyoto 606-01Japan

Personalised recommendations