Radiofrequency Techniques for Interstitial Hyperthermia

  • A. G. Visser
  • R. S. J. P. Kaatee
  • P. C. Levendag
Part of the Medical Radiology book series (MEDRAD)


In the following the term “radiofrequency techniques” is used to designate those electromagnetic heating methods using frequencies in the range of about 0.5–30 MHz. The use of radiofrequency currents at the lower end of this frequency range, to drive electrodes (e.g., implanted needles) which are in galvanic contact with the tissue volume to be heated, is conceptually the most simple technique for interstitial heating. Although this method of heating was the first to be applied and is therefore in a sense “established,” several developments have taken place in recent years which appear worthy of discussion. The use of higher frequencies for interstitial heating is mainly motivated by utilization of capacitive coupling of electrodes inside non- conductive catheters instead of direct galvanic contact with the surrounding tissue. This different working principle of interstitial heating at the higher end of the frequency range and its consequences will also be discussed.


Capacitive Coupling Specific Absorption Rate Conductive Catheter Radio Frequency Applicator Specific Absorption Rate Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astrahan MA, George FW (1980) A temperature regulating circuit for experimental localized current field hyperthermia systems. Med Phys 7: 362–364PubMedCrossRefGoogle Scholar
  2. Corry PM, Martinez AA, Armour EP, Edmundson G (1990) Simultaneous hyperthermia and brachytherapy with remote afterloading. In: Martinez AA, Orton CG, Mould RF (eds) Brachytherapy HDR and LDR. (Proceedings of brachytherapy meeting. Remote afterloading: state of the art, 4–6 May 1989). Nucletron, ColumbiaGoogle Scholar
  3. Cosset JM, Dutreix J, Haie C, Gerbaulet A, Janoray P, Dewar JA (1985) Interstitial thermoradiotherapy: a technical and clinical study of 29 implantations performed at the Institute Gustave-Roussy. Int J Hyperthermia 1:3–13PubMedCrossRefGoogle Scholar
  4. Deurloo IKK, Visser AG, Morawska M, van Geel CAFJ, van Rhoon GC, Levendag PC (1991) Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Phys Med Biol 36: 119–132PubMedCrossRefGoogle Scholar
  5. Dewey WC (1989) Dr Eugene Robinson (1925–1983) Int J Radiat Oncol Biol Phys 16: 531–532CrossRefGoogle Scholar
  6. Doss JD (1975) Use of RF fields to produce hyperthermia in animal tumors. In: Wizenberg MJ, Robinson JE (eds) Proceedings of an international symposium on cancer therapy by hyperthermia and radiation, Washington DC, April 1975. American College of Radiology, Bethesda, MD, pp 226–227Google Scholar
  7. Doss JD, McCabe CW (1976) A technique for localized heating in tissue: an adjunct to tumor therapy. Medical Instrumentation 10: 16–21PubMedGoogle Scholar
  8. Hand JW, Trembly BS, Prior MV (1991) Physics of interstitial hyperthermia: radiofrequency and hot water techniques. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 3. VSP, Zeist, pp 99–134Google Scholar
  9. Kapp DS, Fessenden P, Samulski TV et al. (1988) Stanford University institutional report. Phase 1 evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115PubMedCrossRefGoogle Scholar
  10. Lagendijk JJW (1990) A microwave-like LCF interstitial hyperthermia system. Strahlenther Onkol 166: 521Google Scholar
  11. Lagendijk JJW (1990) A microwave-like LCF interstitial hyperthermia system. Strahlenther Onkol 166: 521Google Scholar
  12. Marchal C, Hoffstetter S, Bey P, Permot M, Gaulard ML (1985) Development of a new interstitial method of heating which can be used with conventional afterloading brachytherapy using Ir-192 (abstract). Strahlentherapie 161: 543–544Google Scholar
  13. Marchal C, Nadi M, Hoffstetter S, Bey P, Pernot M, Prieur G (1989) Practical interstitial method of heating operating at 27 MHz. Int J Hyperthermia 5: 451–466PubMedCrossRefGoogle Scholar
  14. Prionas SD, Fessenden P, Kapp DS, Goffinet DR, Hahn GM (1989) Interstitial electrodes allowing longitudinal control of SAR distributions. In: Sugahara T, Saito M (eds) Hyperthermic oncology 1988, vol 2. Taylor & Francis, London, pp 707–710Google Scholar
  15. Stauffer P (1990) Techniques for interstitial hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 344–370Google Scholar
  16. Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667PubMedGoogle Scholar
  17. Sugimachi K, Inokuchi K (1986) Hyperthermochemotherapy and esophageal carcinoma. Semin Surg Oncol 2: 38–44PubMedCrossRefGoogle Scholar
  18. Sugimachi K, Matsuda H (1990) Experimental and clinical studies of hyperthermia for carcinomas of the esophagus. In: Gautherie M (ed) Interstitial, endocavitary and perfu-sional hyperthermia. Springer, Berlin Heidelberg New York, pp 59–76CrossRefGoogle Scholar
  19. Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276PubMedCrossRefGoogle Scholar
  20. Weisser M, Kneschaurek P (1987) Kombination von inter-stitieller Hyperthermie mit Afterloadingtherapie hoher Dosisleistung. Strahlenther Onkol 163: 654–658PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. G. Visser
    • 1
  • R. S. J. P. Kaatee
    • 1
  • P. C. Levendag
    • 1
  1. 1.Departments of Clinical Physics and RadiotherapyDr. Daniel den Hoed Cancer CenterRotterdamThe Netherlands

Personalised recommendations