Skip to main content

In Vivo Experiments Using Interstitial Radiation and Hyperthermia

  • Chapter
Interstitial and Intracavitary Thermoradiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 77 Accesses

Abstract

Various strategies are employed to improve the efficiency of radiation and thereby increase its effect within tumors without transgressing the limits of normal tissue tolerance. The use of interstitial radiotherapy (IR) represents such a strategy. IR not only provides the physical advantage of a tailored dose distribution to the tumor volume but also has significant underlying radiobiological advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfieri A, Nag S, Horowitz BS, Hahn EW, Kim JH, Hilaris BS (1982) Experimental application of hyperthermia and brachytherapy. In: Hilaris BS et al. (eds) Brachytherapy oncology 1982. Advances in lung and other cancers. Memorial Sloan-Kettering Cancer Center, pp 91–92

    Google Scholar 

  • Bedford JS, Mitchell JB (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54: 316–327

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur E, Elkind MM, Bronk BV (1974) Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res 58: 38–51

    Article  PubMed  CAS  Google Scholar 

  • Bowler K (1981) Heat death and cellular heat injury. J Thermal Biol 8: 426–430

    Article  Google Scholar 

  • Dewey WC, Holahan PK (1987) Thermotolerance as a modifier of radiation toxicity. In: Henle KJ (ed) Thermotolerance and thermophily, vol 1. CRC Press, Boca Raton, pp 113–125

    Google Scholar 

  • Dewey WC, Westra A, Miller HH (1971) Heat induced lethality and chromosome damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol 20: 505–520

    Article  CAS  Google Scholar 

  • Didomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self regulated at both transcriptional and posttranslational levels. Cell 31: 593–603

    Article  PubMed  CAS  Google Scholar 

  • Fu KK, Phillips TL, Kane LJ, Smith V (1975) Tumor and normal tissue response to irradiation. In vivo: variation with decreasing dose rates. Radiology 114: 709–716

    PubMed  CAS  Google Scholar 

  • Gerner EW, Oval JH, Manning MR, Sim DA, Bowden GD, Hevezi JM (1983) Dose-rate dependence of heat radiosen-sitation. Int J Radiat Oncol Biol Phys 9: 1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Delaney TF (1984) Persistence of thermotolerance in slowly proliferating plateau-phase cells. Radiat Res 97: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41: 845–849

    PubMed  CAS  Google Scholar 

  • Hahn EW, Hildenbrand D, Peschke P, Wolber G, Zuna I, Lorenz WJ (1988) Hyperthermia and interstitial radiation (IR) on the rat Dunning prostate tumor (R3327-AT1): radiation dose and sequence of treatment (abstract). In: ESTRO 1988. Den Haag

    Google Scholar 

  • Hahn EW, Wolber G, Bak M, Hover KH, Gerlach L, Volm M, Lorenz WJ (1989) Response of a Dunning prostate tumor to fast neutrons. Strahlentherapie 165: 283–285

    CAS  Google Scholar 

  • Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia in Cancer. Plenum, New York

    Google Scholar 

  • Hall EJ, Lam YM (1978) Renaissance in low dose rate interstitial implants. Radiobiological considerations. Front Radiat Ther Oncol 12: 21–34

    Google Scholar 

  • Hall EJ, Bedford JS, Oliver R (1966) Extreme hypoxia: Its effect on the survival of mammalian cells irradiated at high and low dose rates. Br J Radiol 39: 302–307

    Article  PubMed  CAS  Google Scholar 

  • Harisiadis L, Sung DI, Kessaris N, Hall EJ (1978) Hyperthermia and low dose irradiation. Radiology 129: 195–198

    Google Scholar 

  • Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38: 1843–1851

    PubMed  CAS  Google Scholar 

  • Hill RP, Bush RS (1973) Effect of continuous or fractionated irradiation on a murine sarcoma. Br J Radiol 46: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT, Coffey DS (1983) Model systems for the study of prostate cancer. Clin Oncol 2: 479–498

    CAS  Google Scholar 

  • Jones EL, Lyons BE, Douple EB, Dain BJ (1989) Thermal enhancement of low dose rate irradiation in a murine tumor system. Int J Hyperthermia 5: 509–523

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Dikomey E, Zywietz F (1986) Ausmaß und zeitliche Entwicklung der Thermoresistenz und deren Einfluß auf die Strahlenempfindlichkeit von soliden Transplanta-tionstumoren. In: Streffer C, Herbst M, Schwabe H: Lokale Hyperthermie. Deutscher Ärzte-Verlag, Cologne, pp 23–38

    Google Scholar 

  • Kal HB (1979) Relationship between dose rate and oxygen enhancement ratio. Strahlentherapie 155: 774–775

    PubMed  CAS  Google Scholar 

  • Kal HB, Barendsen GW (1972) Effects of continuous irradiation at low dose rate on a rat rhabdomyosarcoma. Br J Radiol 45: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975a) The radiosensitization of tumor cells by hyperthermia. Br J Radiol 48: 727–728

    Article  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975b) Enhanced killing of hypoxic tumor cells by hyperthermia. Br J Radiol 48: 872–874

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW, Ensign NA (1980) Selective killing of glucose and oxygen deprived HeLa cells by hyperthermia. Cancer Res 40: 3459–3469

    PubMed  CAS  Google Scholar 

  • Kim JH, Hahn EW, Ahmed S (1982) Combination hyperthermia and radiation therapy for malignant melanoma. Cancer 50: 478–482

    Article  PubMed  CAS  Google Scholar 

  • Lazlo A (1992) The effects of hyperthermia on mammalian cell structure and function. Cell Prolif 25: 59–87

    Article  Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Robinson E (1988) Moderate hyperthermia and low dose irradiation. Radiat Res 114: 379–384

    Article  PubMed  CAS  Google Scholar 

  • Maher J, Urano M, Rice L, Suit HD (1981) Thermal resistance in a spontaneous murine tumor. Br J Radiol 54: 1086–1090

    Article  PubMed  CAS  Google Scholar 

  • McNally NJ, Wilson GD (1986) Cell kinetics of normal and perturbed populations measured by incorporation of bromodeoxyuridine and flow cytometry. Br J Radiol 59: 1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Miller RC, Leith JT, Voemett RC, Gerner EW (1978) Effects of interstitial irradiation alone or in combination with localized hyperthermia on the response of a mouse mammary tumor. J Radiat Res 19: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Bedford JS, Bailey SM (1979) Dose rate effects in plateau-phase cultures of S3 HeLa and V79 cells. Radiat Res 79: 552–567

    Article  PubMed  CAS  Google Scholar 

  • Moorthy CR, Hahn EW, Kim JH, Feingold SM, Alfieri AA, Hilaris BS (1984) Improved response of a murine fibrosarcoma (Meth-A) to interstitial radiation when combined with hyperthermia. Int J Radiat Oncol Biol Phys 10: 2145–2148

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Hahn EW, Alfieri AA, Kim JH, Hilaris BS (1981) High intensity 1–125 brachytherapy (BRT) combined with hyperthermia: improved results in a murine fibrosarcoma (Meth A) when compared to 1–125 alone (abstract). Int J Radiat Oncol Biol Phys 7: 1304

    Google Scholar 

  • Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys 6: 1507–1517

    PubMed  CAS  Google Scholar 

  • Overgaard J, Nielsen OS (1983) The importance of thermotolerance for the clinical treatment with hyperthermia. Radiother Oncol 1: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos D, Kimler BF, Estes NC, Durham FJ (1989) Growth delay effect of combined interstitial hyperthermia and brachytherapy in a rat solid tumor model. Anticancer Res 9: 45–47

    PubMed  CAS  Google Scholar 

  • Peschke P, Lohr F, Hahn EW, Wolber G, Hoever K-H, Wenz F, Lorenz WJ (1992) Response of the rat Dunning R3327-AT1 prostate tumor to fractionated fast neutron (N) treatment. Radiat Res 129: 112–114

    Article  PubMed  CAS  Google Scholar 

  • Quastler H, Bensted JRM, Lamerton LF, Simpson SM (1959) Adaptation to continuous irradiation: observations on the rat intestine. Br J Radiol 32: 501–512

    Article  Google Scholar 

  • Rao B, Hopwood LE (1985) Effect of hypoxia on recovery from damage induced by heat and radiation in plateau-phase cells. Radiat Res 101: 312–325

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumor microcirculation as a target for hyperthermia. Invited review. Int J Hyperthermia 2: 111–138

    Article  PubMed  CAS  Google Scholar 

  • Rutgers DH (1988) A Cs-137 afterloading device. Preliminary results of cell kinetic effects of low dose-rate irradiation in an experimental tumour. Strahlenther Onkol 164: 105–107

    PubMed  CAS  Google Scholar 

  • Sapozink MD, Palos B, Goffinet DR, Hahn GM (1983) Combined continuous ultra low dose rate irradiation and radiofrequency hyperthermia in the C3H mouse. Int J Radiat Oncol Biol Phys 9: 1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Spiro IJ, Ling CC, Stickler R, Gaskill J (1985) Oxygen radiosensitisation at low dose rate. Br J Radiol 58: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Streffer C, van Beuningen D (1987) The biological basis for tumor therapy by hyperthermia and radiation. Recent Results Cancer Res 104: 24–70

    Article  PubMed  CAS  Google Scholar 

  • Szechter A, Kowalsky W, Schwarz G (1980) Modification of radiation-dose rate effects by mild hyperthermia in vitro. Radiat Res 83: 394

    Google Scholar 

  • Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. Recent Results Cancer Res 104: 71–109

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Feramesco JR, Blose SH (1985) The mammalian stress response and the cytoskeleton: alterations in intermediate filaments. Ann NY Acad Sci 455: 57–67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peschke, P., Hahn, E.W., Wolber, G. (1993). In Vivo Experiments Using Interstitial Radiation and Hyperthermia. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics