Skip to main content

Thermal Modeling for Interstitial Hyperthermia: General Comparison Between Radiofrequency, Microwave, and Ferromagnetic Techniques

  • Chapter
  • 77 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In this chapter current modeling methods in respect of interstitial hyperthermia techniques are examined. Computational techniques for electromagnetic fields and thermal distributions are described briefly. Proposals are put forward for more accurate modeling techniques, and different hyperthermia techniques are compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chin RB, Stauffer PR (1991) Treatment planning for ferromagnetic seed heating. Int J Radiat Oncol Biol Phys 21: 431–439

    Article  PubMed  CAS  Google Scholar 

  • Cottis PG, Melas Al, Uzunoglu NK (1990) Analysis of energy coupling into spheroidal ferrite implants for hyperthermia applicators. IEEE Trans Microwave Theory Tech 38:1259–1267

    Article  Google Scholar 

  • Denman DL, Foster AF, Leuis GC et al. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth. Int J Radiat Oncol Biol Phys 14: 537–545

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Stauffer P, Dewhirst MW et al. (1991) RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 20: 1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Iskander MF, Tumeh AM, Furse MS (1990) Evaluation and optimization of the electromagnetic performance of interstitial antennas for hyperthermia. Int J Radiat Oncol Biol Phys 18: 895–902

    Article  PubMed  CAS  Google Scholar 

  • James B, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Eng 35: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Strohbehn JW, Trembly BS (1989) Theoretical and experimental SAR distribution for interstitial dipole antenna arrays for hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209

    Article  Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583

    Article  Google Scholar 

  • Lagendijk JJW (1990) Thermal models: principles and implementation. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 478–512

    Google Scholar 

  • Lee DJ, O’Neill MJ, Lam K, Rostock R, Lam W (1986) A new design of microwave interstitial applicator for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW, France LJ (1991) A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models. Int J Hyperthermia 7: 465–483

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, Lagendijk JJW (1991) A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 38: 490–501

    Article  PubMed  CAS  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperature in resting forearm. Appl Physiol: 93–122

    Google Scholar 

  • Prionas SD, Fessenden P, Kapp DS, Goffinet DR, Hahn GM (1988) Interstitial electrodes allowing longitudinal control of SAR distributions. In: Sugahara T, Saito M (eds) Proceeding of the 5th international symposium on hyperthermic oncology. Taylor and Francis, London, p 707

    Google Scholar 

  • Ryan TP, Mechling JA, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: Theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    PubMed  CAS  Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng 32: 152–157

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Article  Google Scholar 

  • Uzunoglu NK, Nikita KS (1988) Estimation of temperature distribution inside tissues heated by interstitial RF electrode hyperthermia systems. IEEE Trans Biomed Eng 35: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Wong TZ, Mechling JA, Jones EL, Strohbehn JW (1988) Transient finite element analysis of thermal methods used to estimate SAR and blood flow in homogeneously and nonhomogeneously perfused tumour models. Int J Hyperthermia 4: 571–592

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Watson M, Sternick ES, Bielawa RJ, Carr KC (1987) Performance characteristics of a helical microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dubal NV, Takamoto-Hampleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 36:1438–1444

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990) The calculated and measured temperature distribution of a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 69–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikita, K.S., Uzunoglu, N.K. (1993). Thermal Modeling for Interstitial Hyperthermia: General Comparison Between Radiofrequency, Microwave, and Ferromagnetic Techniques. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics