Skip to main content

Methods of Thermal Modeling and Their Impact on Interstitial Hyperthermia Treatment Planning

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

What is the purpose of writing another chapter, or book for that matter, on hyperthermia principles involving temperature models and treatment planning? The answer is that the field is constantly changing as new technologies appear and refinements of current technologies occur. Additional mathematical models for thermal modeling have been developed since prior books or chapters have been published, with many of these now en compassing three-dimensional (3-D) calculations. Also, practical 3-D noninvasive thermal imaging systems are being developed which will be a boon to temperature control during hyperthermia treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babbs CF, Fearnot NE, Marchosky JA, Moran EJ, Jones JT, Plantenga TD (1990) Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. IEEE Trans Biomed Eng 37: 662–672

    Article  PubMed  CAS  Google Scholar 

  • Barrett AH, Myers PC (1985) Basic principles and applications of microwave thermography. In: Larson LE, Jacobi JH (eds) Medical applications of microwave imaging. IEEE, New York, pp 41–46

    Google Scholar 

  • Brezovich I A, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by selfregulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Camart JC, Morganti F, Fabre JJ, Chive M (1991) Microwave interstitial hyperthermia controlled by microwave radiometry: modeling of the temperature increasing versus time. In: Nagel JH, Smith WM (eds) Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp. 991–992

    Google Scholar 

  • Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Chen ZP, Miller WH, Roemer RB, Cetas TC (1990) Errors between 2-and 3-dimensional thermal model predictions of hyperthermia treatments. Int J Hyperthermia 6: 175–191

    Article  PubMed  Google Scholar 

  • Chin RB, Stauffer PR (1991) Treatment planning for ferromagnetic seed heating. Int J Radiat Oncol Biol Phys 21: 431–439

    Article  PubMed  CAS  Google Scholar 

  • Clegg ST, Roemer RB, Cetas TC (1985) Estimation of complete temperature fields from measured transient temperatures. Int J Hyperthermia 1: 265–286

    Article  PubMed  CAS  Google Scholar 

  • Conway J (1987) Electrical impedance tomography for thermal modeling of hyperthermic treatment: an assessment using in-vitro and in-vivo measurements. Clin Phys Physiol Meas [Suppl A] 8: 141–146

    Article  PubMed  Google Scholar 

  • Cravalho EG, Fox LR, Kan JC (1980) The application of the bioheat equation to the design of thermal protocols for local hyperthermia. Ann NY Acad Sci 335: 86–97

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Lagendijk JJW (1990) Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 35: 905–923

    Article  PubMed  CAS  Google Scholar 

  • Deford JP, Babbs CF, Patel UH, Bleyer MW, Marchosky JA, Moran CJ (1991) Effective estimation and computer control of minimum tumor temperature during conductive interstitital hyperthermia. Int J Hyperthermia 7: 441–453

    Article  PubMed  CAS  Google Scholar 

  • Divrik AM, Roemer RB, Cetas TC (1984) Inference of complete tissue temperature fields from a few measured temperatures: an unconstrained optmization method. IEEE Trans Biomed Eng 31: 150–160

    Article  PubMed  CAS  Google Scholar 

  • Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44: 605–612

    PubMed  CAS  Google Scholar 

  • Emami B, Stauffer P, Dewhirst MW et al. (1991) RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Biol Oncol Phys 20: 1117–1124

    Article  CAS  Google Scholar 

  • Endrich B, Reinhol HS, Gross JF, Intaglietta M (1979) Tissue perfusion inhomogeneity during early tumor growth in rats. J Natl Cancer Inst 62: 387–396

    PubMed  CAS  Google Scholar 

  • Eppert V, Trembly BS, Richter HJ (1991) Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment. IEEE Trans Biomed Eng 38: 450–460

    Article  PubMed  CAS  Google Scholar 

  • Furse CM, Iskander MF (1989) Three dimensional electromagnetic power deposition in tumors with interstitial antenna arrays. IEEE Trans Biomed Eng 36: 977–986

    Article  PubMed  CAS  Google Scholar 

  • Gentile DB, Gori F, Leoncini M (1991) Electromagnetic and thermal models of a water-cooled dipole radiating in a biological tissue. IEEE Trans Biomed Eng 38: 98–103

    Article  Google Scholar 

  • Griffiths H, Ahmed A (1987) Applied potential tomography for non-invasive temperature mapping and hyperthermia. Clin Phys Physiol Meas [Suppl A] 8: 147–153

    Article  PubMed  Google Scholar 

  • Hall AS, Prior MV, Hand JW, Young IR, Dickinson RJ (1990) Observation by MR imaging of in-vivo temperature changes induced by radiofrequency hyperthermia. J Comput Assist Tomogr 14: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Iskander MF, Tumeh AM (1989) Design optimization for interstitial antennas. IEEE Trans Biomed Eng 36: 236–247

    Article  Google Scholar 

  • Iskander MF, Tumeh AM, Furse CM (1990) Evaluation and optimization of the electromagnetic performance of interstitial antennas for hyperthermia. Int J Radiat Oncol Biol Phys 18: 895–902

    Article  PubMed  CAS  Google Scholar 

  • Joines WT, Shrivastava S, Jirtle R (1989) A comparison using tissue electric properties and temperature rise to determine relative absorption of microwave power in malignant tissue. Med Phys 16: 840–844

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Strohbehn JW, Trembly BS (1989) Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209

    Article  Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583

    Article  Google Scholar 

  • Mantyla MJ, Toivanen JT, Pitkanen MA, Rekonen AH (1982) Radiation-induced changes in regional blood flow in human tumors. Int J Radiat Oncol Biol Phys 8: 1711–1717

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW (1986) A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Int J Radiat Oncol Biol Phys 12: 2137–2149

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW (1992) Three dimensional theoretical SAR and temperature distributions created in brain tissue by 915 and 2450 MHz dipole antenna arrays with varying insertion depths. Int J Hyperthermia (in press)

    Google Scholar 

  • Mechling JA, Strohbehn JW, France LJ (1991a) A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumor models. Int J Hyperthermia 7: 465–483

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW, Ryan TP (1991b) Threedimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Int J Radiat Oncol Biol Phys 22: 131–138

    Article  Google Scholar 

  • Mooibroek J, Lagendijk JJW (1991) A fast and simple algorithm for the calculation of convective heat transfer by large vessels in 3-dimensional inhomogeneous tissue. IEEE Trans Biomed Eng 38: 490–501

    Article  PubMed  CAS  Google Scholar 

  • Ocheltree KP, Frizzell LA (1987) Determination of power deposition patterns for localized hyperthermia: a steady-state analysis. Int J Hyperthermia 3: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Ocheltree KP, Frizzell LA (1988) Determination of power deposition patterns for localized hyperthermia: a transient analysis. Int J Hyperthermia 4: 281–296

    Article  PubMed  CAS  Google Scholar 

  • Osterhout WJV (1922) Injury, recovery and death in relation to conductivity and permeability. Lippincott, Philadelphia

    Book  Google Scholar 

  • Patel UH, Deford UA, Babbs CF (1991), Computer-aided design and evaluation of novel catheters for conductive interstitial hyperthermia. Med Biol Eng Comput 29: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Paulsen KD, Moskowitz MJ, Ryan TP (1991) A combined invasive-non invasive conductivity profile reconstruction approach for thermal imaging in hyperthermia. In: Nagel JH, Smith WM (eds) Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 323–324

    Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Phys 1: 93–122

    CAS  Google Scholar 

  • Plancot M, Prevost B, Chive M, Fabre JJ, Ladee R, Giaux G (1987) A new method for thermal dosimetry in microwave hyperthermia using microwave radiometry for temperature control. Int J Hyperthermia 3: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Prior MV (1991) Comparative study of RF-LCF and hot-sources interstitial hyperthermia techniques. Int J Hyperthermia 7: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumor microcirculation as a target for hyperthermia. Int J Hyperthermia 2: 111–137

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB (1990) Thermal dosimetry. In: Gautherie M (ed) Clinical thermology, thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 119–214

    Google Scholar 

  • Roemer RB (1991) Optimal power deposition in hyperthermia. I. The treatment goal: the ideal temperature distribution: the role of large blood vessels. Int J Hyperthermia 7: 317–341

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP (1991a) Techniques for heating brain tumors with implantable microwave antennas. In: Heiter GL (ed) Proceedings of IEEE MTT-S International Microwave Symposium, vol 2. IEEE, New York, pp. 791–794

    Google Scholar 

  • Ryan TP (1991b) Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21: 403–413

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Mechling JA, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Moskowitz MJ, Paulsen KD (1991) The Dartmouth electrical impedance tomography system for thermal imaging. In: Nagel JH, Smith WM (eds) Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 321–322

    Google Scholar 

  • Ryan TP, Hoopes PJ, Jonsson E, Heaney J (1992) Use of a water-cooled microwave applicator for transurethral prostate heating: techniques for in-vivo temperature analysis. In: Gerner EW (ed) Hyperthermic oncology, vol 1. ICHO, Tucson, p 267

    Google Scholar 

  • Schepps JL, Foster KR (1980) The UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. Phys Med Biol 25: 1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Schreier K, Budihna M, Lesnicar H et al. (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Seegenschmidt MH, Sauer R, Fietkau R, Karlsson UL, Brady LW (1990) Primary advanced and local recurrent head and neck tumors, effective management with interstitial thermal radiation therapy. Radiology 176: 267–274

    Google Scholar 

  • Sekins KM, Emery AF, Lehmann JF, MacDougall JA (1982) Determination of perfusion field during local hyperthermia with the aid of finite element thermal models. J Bi-omech Eng 104: 272–279

    CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SL (1980) Effective hyperthermia on vasculature function in normal and neoplastic tissues. Ann NY Acad Sci 335: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Lokshina A, Rhee JG, Patten M, Levitt SH (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Engin 31: 9–16

    Article  CAS  Google Scholar 

  • Stauffer PR, Cetas TC, Fletcher AM, Deyoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Engin 31: 76–90

    Article  CAS  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions for RF electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    PubMed  CAS  Google Scholar 

  • Strohbehn JW (1987) Interstitial techniques for hyperthermia. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff, Boston, pp 211–239

    Google Scholar 

  • Strohbehn JW (1991) An engineer looks at hyperthermia. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Proceedings of the Ninth International Radiation Research Meeting, vol 2. Academic, San Diego, pp 14–25

    Google Scholar 

  • Strohbehn JW, Roemer RB (1984) A survey of computer simulation of hyperthermia techniques. IEEE Trans Biomed Eng 31: 136–149

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Engin 29: 649–661

    Article  CAS  Google Scholar 

  • Tomikawa W, Numata M, Yamada H, Nakamura H (1988) Measurement of internal temperature distribution using ultrasonic CT -in case of eccentric heat source existence. Acoust Soc Jpn 2: 777–778

    Google Scholar 

  • Tompkins DT, Partington BP, Steeves RA, Bartholow SD, Paliwal BR (1992) Effect of implant variables on temperatures achieved during ferromagnetic hyperthermia. Int J Hyperthermia 8: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng 32: 152–157

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS, Ryan TP (1992) Review of interstitial microwave hyperthermia techniques. In: Gerner EW (ed) Hyperthermia oncology, vol 2. ICHO, Tucson (in press)

    Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial microwave array through a variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Article  Google Scholar 

  • Trembly BS, Wilson AH, Havard JM, Sabatakakis K, Strohbehn JW (1988) Comparison of power deposition by inphase 433 MHz and phase-modulated 915 MHz interstitial antenna array hyperthermia systems. IEEE Trans Microwave Theory Tech 36: 908–916

    Article  Google Scholar 

  • Trembly BS, Douple EB, Hoopes PJ (1991) The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in-vivo. Int J Hyperthermia 7: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Tumeh AM, Iskander MF (1989) Performance comparison of available interstitial antennas for microwave hyperthermia. IEEE Trans Microwave Theory Tech 37: 1126–1133

    Article  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J Biomech Eng 107: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Wong TZ, Mechling JA, Jones EL, Strohbehn JW (1988) Transient finite element analysis of thermal models used to estimate SAR and blood flow in the homogeneously and non-homogeneously perfused tumor models. Int j Hyperthermia 4: 571–592

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Samulski TV, Joines WT, Mattiello J, Levin RL, LeBihan D (1992) On the accuracy of non-invasive thermometry using molecular diffusion magnetic imaging. Int J Hyperthermia 8: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Zhu XL, Gandhi OP (1988) Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors. IEEE Trans Biomed Eng 35: 382–388

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryan, T.P. (1993). Methods of Thermal Modeling and Their Impact on Interstitial Hyperthermia Treatment Planning. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics