Skip to main content

Biological Rationale of Interstitial Thermoradiotherapy

  • Chapter
Interstitial and Intracavitary Thermoradiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 77 Accesses

Abstract

The biological rationale of interstitial thermoradiotherapy is based on the complementary actions of hyperthermia and radiation when combined for cancer therapy. As will be reviewed in following chapters, there is significant in vitro and in vivo evidence to suggest interstitial heat and radiation have synergistic interactions. Optimal clinical application of interstitial thermoradiotherapy depends on the essential biological interactions, the physics, and the practical implementation of interstitial thermoradiotherapy. To date, clinical studies using hyperthermia and radiation have yielded mixed results. This is related to variation between studies with regard to doses, timing of treatments, and technical differences. Defining consistent thermal dosimetry and uniform clinical end-points has also complicated results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armour EP, Wang Z, Corry PM, Martinez A (1991) Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41°C hyperthermia. Cancer Res 51: 3088–3095

    PubMed  CAS  Google Scholar 

  • Badanidiyor SR, Hopwood LE (1985) Effect of hypoxia on recovery from damage induced by heat and radiation in plateau-phase CHO cells. Radiat Res 101: 312–325

    Article  Google Scholar 

  • Baker DG, Sager HT, Constable WC (1987) The response of a solid tumor to x-irradiation as modified by dose rate, fractionation, and hyperthermia. Cancer Invest 5 : 409–416

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur E, Elkind MM, Bronk BV (1974) Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res 58: 38–51

    Article  PubMed  CAS  Google Scholar 

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37: 3780–3784

    PubMed  CAS  Google Scholar 

  • Dewey WC (1989) Mechanism of thermal radiosensitization. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol II. VSP BV, Netherlands, pp 1–16

    Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 463–474

    PubMed  CAS  Google Scholar 

  • Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster ovary cells: relationship between cell lethality and chromosomal aberrations. Radiat Res 76: 48–59

    Article  PubMed  CAS  Google Scholar 

  • Dikomey E, Jung H (1988) Correlation between polymerase β activity and thermal radiosensitization in Chinese hamster cells. Recent Results Cancer Res 109: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. I. Repair of x-ray damage in surviving Chinese hamster cells. Radiat Res 13: 556–593

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Malcom A (1985) Acid modification of thermal damage and its relationship to nutrient availability. Int J Radiat Oncol Biol Phys 11: 1823–1826

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Boone ML, Enseley BA, Gillette EL (1981a) The influence of environmental pH on the interaction and repair of heat and radiation damage. Int J Radiat Oncol Biol Phys 7: 761–764

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Holahan EV, Highfield DP, Raaphorst GP, Spiro IJ, Dewey WC (1981b) The effect of pH on hyperthermia and x-ray induced cell killing. Int J Radiat Oncol Biol Phys 7: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Gerner EW, Oval JH, Manning MR, Sim DA, Bowden GT, Hevezi JM (1983) Dose-rate dependence of heat radiosensitization. Int J Radiat Oncol Biol Phys 9: 1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Gillette El, Dewey WC (1974) Killing of Chinese hamster cells in vitro by heating under hypoxic and aerobic conditions. Eur J Cancer 10: 691–693

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B, Jennings M (1981) The influence of variable oxygen concentration on the response of cells to heat and/or x-irradiation. Radiat Res 85: 314–320

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Dahlberg WK, Epstein LF, Shimm DS (1984) Influence of nutrient and energy deprivation on cellular response to single and fractionated heat treatments. Radiat Res 99: 573–581

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Bagshaw MA, Evans RG, Gordon LF (1973) Repair of potentially lethal lesions in x-irradiated, density-inhibited Chinese hamster cells: metabolic effects and hypoxia. Radiat Res 55: 280–290

    Google Scholar 

  • Hall EJ (1972) Radiation dose rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 45: 81–97

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1978) Radiobiology for the radiologist, 2nd edn. Harper and Row, New York, pp 31–38

    Google Scholar 

  • Hall EJ, Brown JM, Cavanaugh J (1968) Radiosensitivity and the oxygen effect measured at different phases of the mitotic cycle using synchronously dividing cells of the root meristem of Vicia faba. Radiat Res 35: 622–634

    Article  PubMed  CAS  Google Scholar 

  • Harisiadis L, Sung DI, Kessaris N, Hall EJ (1978) Hyper thermia and low dose-rate irradiation. Radiology 129: 195–198

    Google Scholar 

  • Haveman J, Wondergem J (1988) Thermal enhancement of cell killing effect of x-irradiation in mammalian cells in vitro and in a transplantable mouse tumor: influence of pH, thermotolerance, hypoxia, or misonidazole. Recent Results Cancer Res 109: 149–160

    Article  PubMed  CAS  Google Scholar 

  • Haveman J, Hart AA, Wondergem J (1987) Thermal radiosensitization and thermotolerance in cultured cells from a murine mammary carcinoma. Int J Radiat Biol 51: 71–80

    Article  CAS  Google Scholar 

  • Henderson SD, Kimler BF, Scanlan MF (1982) Interaction of hyperthermia and radiation on the survival of synchronous 9L cells. Radiat Res 92: 146–159

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38: 1843–1851

    PubMed  CAS  Google Scholar 

  • Holahan EV, Highfield DP, Holahan PK, Dewey WC (1984) Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effect of pH and thermal tolerance. Radiat Res 97: 108–131

    Article  PubMed  CAS  Google Scholar 

  • Holahan PK, Wong RSL, Thompson LL, Dewey WC (1986) Hyperthermic radiosensitization of thermotolerant Chinese hamster ovary cells. Radiat Res 107: 332–343

    Article  PubMed  CAS  Google Scholar 

  • Jones EL, Douple EB (1990a) The effect of in vivo GSH depletion on thermosensitivity, radiosensitivity, and thermal radiosensitization. Int J Hyperthermia 6: 951–955

    Article  PubMed  CAS  Google Scholar 

  • Jones EL, Douple EB (1990b) Effect of step down heating on brachytherapy in a murine tumor system. Radiat Res 124: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Jones EL, Douple EB, Lyons BE (1989) Thermal enhancement of low dose rate irradiation in a murine tumor system. Int J Hyperthermia 5: 509–523

    Article  PubMed  CAS  Google Scholar 

  • Kallman RJ (1972) The phenomenon of reoxygenation and its complications for fractionated radiotherapy. Radiology 105:135–142

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975) The radiosensitization of hypoxic tumor cells by hyperthermia. Radiology 114: 727–728

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Lajtha LG, Oliver R (1961) Some radiobiological considerations in radiotherapy. Br J Radiol 34: 252–257

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Somaia S (1987) Thermotolerance induced by fractionated hyperthermia: dependence of the interval between fractions. Int J Hyperthermia 3: 433–439

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Kal HB (1977) Effect of hyperthermia on radiation response of two mammalian ceil lines. Eur J Cancer 13: 65–69

    PubMed  CAS  Google Scholar 

  • Li GC, Evans RG, Hahn GM (1976) Modification and inhibition of repair of potentially lethal x-ray damage by hyperthermia. Radiat Res 67: 491–501

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Robinson E (1988) Moderate hyperthermia and low dose rate irradiation. Radiat Res 11: 379–384

    Article  Google Scholar 

  • Ling CC, Spiro IJ, Mitchell J, Stickler R (1985) The variation in OER with dose rate. Int J Radiat Oncol Biol Phys 11 : 1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Miller RC, Leith JT, Veomett RC, Gerner EW (1978) Effects of interstitial irradiation alone, or in combination with localized hyperthermia in the response of a mouse mammary tumor. J Radiat Res 19: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Mivechi NF, Li GC (1987) Lack of effect of thermotolerance on radiation response and thermal radiosensitization of murine bone marrow progenitors. Cancer Res 47: 1538–1541

    PubMed  CAS  Google Scholar 

  • Moorthy CR, Hahn EW, Kim JH, Feingold SM, Alfieri A A, Hilaris BS (1984) Improved response of a murine fibrosarcoma (METH-A) to interstitial radiation when combined with hyperthermia. Int J Radiat Oncol Biol Phys 10: 2145–2148

    Article  PubMed  CAS  Google Scholar 

  • Murthy AK, Harris JR, Belli JA (1977) Hyperthermia and radiation response of plateau phase cells. Radiat Res 70: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys 16: 535–549

    Article  PubMed  CAS  Google Scholar 

  • Phillips RA, Tolmach LJ (1966) Repair of potentially lethal damage in x-irradiated HeLa cells. Radiat Res 29: 413–432

    Article  PubMed  CAS  Google Scholar 

  • Power JA, Harris JW (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios. Radiology 123: 767–770

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103: 653–666

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Feeley MM (1990) Comparison of recovery from potentially lethal damage after exposure to hyperthermia and radiation. Radiat Res 121: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Freeman ML, Dewey WC (1979a) Radiosensitivity and recovery from radiation damage in cultured CHO cells exposed to hyperthermia at 42.5°C or 45.5°C. Radiat Res 79: 390–402

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Romano SL, Mitchell JB, Bedford JS, Dewey WC (1979b) Intrinsic differences in heat and/or x-ray sensitivity of seven mammalian cell lines cultured and treated under identical conditions. Cancer Res 39: 396–401

    PubMed  CAS  Google Scholar 

  • Raaphorst GP, Broski AP, Azzam El (1985) Sensitivity to heat, radiation and heat plus radiation of Chinese hamster cells synchronized by mitotic selection, thymidine block, or hydroxyurea. J Thermal Biol 10: 177–181

    Article  Google Scholar 

  • Raaphorst GP, Azzam El, Feeley MM (1988) Potentially lethal radiation damage repair and its inhibition by hyperthermia in normal hamster cells, mouse cells, and transformed mouse cells. Radiat Res 113: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Robinson JE, Wizenberg MJ, McCready WA (1974) Combined hyperthermia and radiation suggest an alternative to heavy particle therapy for reduced oxygen enhancement ratios. Nature 251: 421–422

    Article  Google Scholar 

  • Roti Roti JL, Laszlo A (1988) The effects of hyperthermia on cellular macromolecules. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol I. VSP BV, Netherlands, pp 13–56

    Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10: 787–800

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Palos B, Goffinet DR, Hahn GM (1983) Combined continuous ultra low dose rate irradiation and radiofrequency hyperthermia in the C3H mouse. Int J Radiat Oncol Biol Phys 9: 1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WK (1968) Cyclic x-ray responses in mammalian cells in vitro. Radiat Res 33: 620–643

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WK, Morton RA (1966) X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat Res 29: 450–474

    Article  PubMed  CAS  Google Scholar 

  • Spiro IJ, McPherson S, Cook JA, Ling CC, DeGraff W, Mitchell JB (1991) Sensitization of low dose rate irradiation by nonlethal hyperthermia. Radiat Res 127: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Terasima R, Tolmach LJ (1963) X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140: 490–492

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

    Article  PubMed  CAS  Google Scholar 

  • Westra A, Dewey WC (1971) Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19: 467–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, E.L. (1993). Biological Rationale of Interstitial Thermoradiotherapy. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics