Pulsed Resonance Identification Method

  • Naum D. Veksler
  • Herbert Überall
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 11)


Here, in addition to the method described in Chap. 5, an alternative experimental method is outlined for isolation of the resonance components of the peripheral waves. The distinguishing feature of this approach is the utilization of short in time (broadband) incident pulse. This ultrasonic method exhibits good capabilities for detection, characterization, and classification of resonances. This approach allows one to reduce the time needed for an experimental investigation, admittedly at the expense of the exactness of the result.


Rayleigh Wave Form Function Acoustic Pressure Incident Pulse Aluminum Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    G.R. Barnard, C.M. McKinney: Scattering of acoustic energy by solid and air-filled cylinders in water. J. Acoust. Soc. Am. 33, 226–238 (1961)CrossRefADSGoogle Scholar
  2. 6.2
    L.D. Hampton, C.M. McKinney: Experimental study of the scattering of acoustic energy from solid metal spheres in water. J. Acoust. Soc. Am. 33, 664–673 (1961)CrossRefADSGoogle Scholar
  3. 6.3
    R. Hickling: Analysis of echoes from a solid elastic sphere in water. J. Acoust. Soc. Am. 34, 1582–1592 (1962)CrossRefADSGoogle Scholar
  4. 6.4
    R. Hickling: Analysis of echoes from a hollow metallic sphere in water. J. Acoust. Soc. Am. 36, 1124–1137 (1964)CrossRefADSGoogle Scholar
  5. 6.5
    R. Hickling, R.W. Means: Scattering of frequency-modulated pulses by spherical elastic shells in water. J. Acoust. Soc. Am. 44, 1246–1252 (1968)CrossRefADSGoogle Scholar
  6. 6.6
    L.R. Dragonette, S.K. Numrich, L.J. Frank: Calibration technique for acoustic scattering measurements. J. Acoust. Soc. Am. 69, 1186–1189 (1981)CrossRefADSGoogle Scholar
  7. 6.7
    M. de Billy: Determination of the resonance spectrum of elastic bodies via the use of short pulses and Fourier transform theory. J. Acoust. Soc. Am. 79, 219–221 (1986)CrossRefADSGoogle Scholar
  8. 6.8
    L. Flax, L.R. Dragonette, H. Überall: Theory of elastic resonance excitation by sound scattering. J. Acoust. Soc. Am. 63, 723–731 (1978)CrossRefMATHADSGoogle Scholar
  9. 6.9
    A. Derem, J.L. Rousselot, G. Maze, J. Ripoche, A. Faure: Diffusion d’une onde acoustique plane par des cylindres solides immerges: etude experimentale et théorie des résonances. Acustica 50, 39–50 (1982)Google Scholar
  10. 6.10
    G. Maze, J. Ripoche: Méthode d’isolement et d’identification des résonances (M.I.I.R.) de cylindres et de tubes soumis à une onde acoustique plane dans l’eau. Rev. Phys. Appl. 18, 319–326 (1983)CrossRefGoogle Scholar
  11. 6.11
    P. Pareige, J.L. Rembert, G. Maze, J. Ripoche: Methode impulsionnelle numerisée (MIN) pour l’isolement et l’identification des resonances de tubes immergés. Phys. Lett. A 135, 143–146 (1989)CrossRefADSGoogle Scholar
  12. 6.12
    G. Quentin, A. Cand: Pulsed resonance identification method. Electron. Lett. 25, 353–354 (1989)CrossRefGoogle Scholar
  13. 6.13
    G. Quentin, I. Molinero, M. de Billy: Etude du spectre acoustique de quelques échantillons élastiques de forme cylindrique. II Etude expérimentale. Acustica 65, 275–283 (1988)Google Scholar
  14. 6.14
    J.L. Rousselot: Etude du spectre acoustique de quelques échantillons élastiques de forme cylindrique. Acustica 65, 267–274 (1988)Google Scholar
  15. 6.15
    M. Talmant, G. Quentin: Backscattering of short ultrasonic pulses from thin cylindrical shells. J. Appl. Phys. 63, 1857–1863 (1988)CrossRefADSGoogle Scholar
  16. 6.16
    M. Talmant, G. Quentin, J.L. Rousselot, J.V. Subrahmanyam, H. Überall: Acoustic resonances of thin cylindrical shells and the resonance scattering theory. J. Acoust. Soc. Am. 84, 681–688 (1988)CrossRefADSGoogle Scholar
  17. 6.17
    D.E. Busson: Diffraction of a plane acoustic wave by a layered elastic sphere. Proc. Inst. Acoust. 7, 160–168 (1985)Google Scholar
  18. 6.18
    N.D. Veksler: Information Analysis in Hydroelasticity (Valgus, Tallinn 1982) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Naum D. Veksler
    • 1
  • Herbert Überall
    • 2
  1. 1.Institute of CybernecticsEstonian Academy of SciencesTallinnEstonia
  2. 2.Department of PhysicsCatholic University of AmericaWashingtonUSA

Personalised recommendations