Skip to main content

Pulsed Resonance Identification Method

  • Chapter
Resonance Acoustic Spectroscopy

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 11))

  • 165 Accesses

Abstract

Here, in addition to the method described in Chap. 5, an alternative experimental method is outlined for isolation of the resonance components of the peripheral waves. The distinguishing feature of this approach is the utilization of short in time (broadband) incident pulse. This ultrasonic method exhibits good capabilities for detection, characterization, and classification of resonances. This approach allows one to reduce the time needed for an experimental investigation, admittedly at the expense of the exactness of the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.R. Barnard, C.M. McKinney: Scattering of acoustic energy by solid and air-filled cylinders in water. J. Acoust. Soc. Am. 33, 226–238 (1961)

    Article  ADS  Google Scholar 

  2. L.D. Hampton, C.M. McKinney: Experimental study of the scattering of acoustic energy from solid metal spheres in water. J. Acoust. Soc. Am. 33, 664–673 (1961)

    Article  ADS  Google Scholar 

  3. R. Hickling: Analysis of echoes from a solid elastic sphere in water. J. Acoust. Soc. Am. 34, 1582–1592 (1962)

    Article  ADS  Google Scholar 

  4. R. Hickling: Analysis of echoes from a hollow metallic sphere in water. J. Acoust. Soc. Am. 36, 1124–1137 (1964)

    Article  ADS  Google Scholar 

  5. R. Hickling, R.W. Means: Scattering of frequency-modulated pulses by spherical elastic shells in water. J. Acoust. Soc. Am. 44, 1246–1252 (1968)

    Article  ADS  Google Scholar 

  6. L.R. Dragonette, S.K. Numrich, L.J. Frank: Calibration technique for acoustic scattering measurements. J. Acoust. Soc. Am. 69, 1186–1189 (1981)

    Article  ADS  Google Scholar 

  7. M. de Billy: Determination of the resonance spectrum of elastic bodies via the use of short pulses and Fourier transform theory. J. Acoust. Soc. Am. 79, 219–221 (1986)

    Article  ADS  Google Scholar 

  8. L. Flax, L.R. Dragonette, H. Überall: Theory of elastic resonance excitation by sound scattering. J. Acoust. Soc. Am. 63, 723–731 (1978)

    Article  MATH  ADS  Google Scholar 

  9. A. Derem, J.L. Rousselot, G. Maze, J. Ripoche, A. Faure: Diffusion d’une onde acoustique plane par des cylindres solides immerges: etude experimentale et théorie des résonances. Acustica 50, 39–50 (1982)

    Google Scholar 

  10. G. Maze, J. Ripoche: Méthode d’isolement et d’identification des résonances (M.I.I.R.) de cylindres et de tubes soumis à une onde acoustique plane dans l’eau. Rev. Phys. Appl. 18, 319–326 (1983)

    Article  Google Scholar 

  11. P. Pareige, J.L. Rembert, G. Maze, J. Ripoche: Methode impulsionnelle numerisée (MIN) pour l’isolement et l’identification des resonances de tubes immergés. Phys. Lett. A 135, 143–146 (1989)

    Article  ADS  Google Scholar 

  12. G. Quentin, A. Cand: Pulsed resonance identification method. Electron. Lett. 25, 353–354 (1989)

    Article  Google Scholar 

  13. G. Quentin, I. Molinero, M. de Billy: Etude du spectre acoustique de quelques échantillons élastiques de forme cylindrique. II Etude expérimentale. Acustica 65, 275–283 (1988)

    Google Scholar 

  14. J.L. Rousselot: Etude du spectre acoustique de quelques échantillons élastiques de forme cylindrique. Acustica 65, 267–274 (1988)

    Google Scholar 

  15. M. Talmant, G. Quentin: Backscattering of short ultrasonic pulses from thin cylindrical shells. J. Appl. Phys. 63, 1857–1863 (1988)

    Article  ADS  Google Scholar 

  16. M. Talmant, G. Quentin, J.L. Rousselot, J.V. Subrahmanyam, H. Überall: Acoustic resonances of thin cylindrical shells and the resonance scattering theory. J. Acoust. Soc. Am. 84, 681–688 (1988)

    Article  ADS  Google Scholar 

  17. D.E. Busson: Diffraction of a plane acoustic wave by a layered elastic sphere. Proc. Inst. Acoust. 7, 160–168 (1985)

    Google Scholar 

  18. N.D. Veksler: Information Analysis in Hydroelasticity (Valgus, Tallinn 1982) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veksler, N.D., Überall, H. (1993). Pulsed Resonance Identification Method. In: Überall, H. (eds) Resonance Acoustic Spectroscopy. Springer Series on Wave Phenomena, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84795-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84795-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84797-4

  • Online ISBN: 978-3-642-84795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics