Skip to main content

Stochastic Computational Mechanics in Brittle Fracture and Fatigue

  • Conference paper
Nonlinear Stochastic Mechanics

Part of the book series: IUTAM Symposia ((IUTAM))

Abstract

The probabilistic finite element method (PFEM), which is based on a second-order perturbation is developed for non-linear problems. In order to incorporate the probabilistic distribution for the compatibility condition, constitutive law, equilibrium, domain, and boundary conditions into the PFEM, the probabilistic Hu-Washizu variational principal is applied. The first- and second- order moments of the response variable are determined from the statistics of the random parameters and loads. The fusion of the PFEM and the first order reliability analysis provides a means for determining fatigue life and its stochastic nature which results from the randomness in the load, crack length, crack location and orientation, and crack growth parameters. A stochastic damage model is employed to explore the brittle fracture of advanced materials. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. The statistical nature of the fracture toughness is compared with the Neville function, which gives correct fits to sets of experimental data from advanced materials. Finally, a stochastic approach to the curved fatigue crack growth reliability is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, W.K. and T. Belytschko (1989), Computational Mechanics of Probabilistic and Reliability Analysis, Elme Press International.

    Google Scholar 

  2. Ang, A.H.S. and Tang, W.H. (1984), Probability Concepts in Engineering Planning and Design: Volume II — Decision, Risk, and Reliability, John Wiley & Sons, New York.

    Google Scholar 

  3. Augusti, G., Baratta, A. and Casciati, F. (1984), Probabilistic Methods in Structural Engineering, Chapman and Hall, London.

    Book  MATH  Google Scholar 

  4. Madsen, H.O., Krenk, S. and Lind, N.C. (1986), Methods of Structural Safety, Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  5. Liu, W.K., Belytschko, T. and Mani, A. (1986), “Probabilistic Finite Elements for Nonlinear Structural Dynamics,” Comput. Methods Appl. Mech. Eng., Vol. 56.

    Google Scholar 

  6. Liu, W.K., Belytschko, T. and Mani, A. (1986), “Random Field Finite Elements,” Int. J. Numer. Methods Eng., Vol. 23, pp. 1831–1845.

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, W.K., Belytschko, T. and Mani (1987), “Applications of Probabilistic Finite Element Methods in Elastic/Plastic Dynamics,” J. Eng. Ind., ASME, Vol. 109, pp.2–8.

    Article  Google Scholar 

  8. Liu, W. K., Mani, A. and Belytschko, T. (1988). “Finite Element Methods in Probabilistic Mechanics,” Probabilistic Engng Mech., Vol. 2, 201–213.

    Article  ADS  Google Scholar 

  9. Liu, W.K., Besterfield, G.H. and Belytschko, T. (1988), “Variational Approach to Probabilistic finite Elements,” J. Eng. Mech. ASCE, Vol. 114, pp. 2115–2133.

    Article  Google Scholar 

  10. Besterfield, G.H., Liu, W.K., Lawrence, M.A., and Belytschko, T.B. (1990), “Brittle Fracture Reliability by Probabilistic Finite Elements,” J. Eng. Mech., ASCE, Vol. 116, pp. 642–659.

    Article  Google Scholar 

  11. Besterfield, G.H., Liu, W.K., Lawrence, M. and Belytschko, T. (1991), “Fatigue Crack Growth Reliability by Probabilistic Finite Elements,” Comput. Methods Appl. Mech. Eng., Vol. 86, pp.297–320.

    Article  MATH  ADS  Google Scholar 

  12. Hillerborg, A., Modeer, M. and Peterson, P.E. (1976), “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement Coner. Res., Vol. 6, pp. 773–782.

    Article  Google Scholar 

  13. Horri, H. and Nemat-Nasser, S. (1983), “Overall Moduli of Solids with Microcracks: Load-Induced Anisotropy,” J. Mech. Phys. Solids, Vol. 31, 155–171.

    Article  ADS  Google Scholar 

  14. Rose, L.R.F. (1986), “Microcrack Interaction with a Main Crack,” Int. J. Fracture Mech., Vol. 31, pp. 233–242.

    Article  Google Scholar 

  15. Kachanov, M. (1986), “On Crack-Microcrack Interactions,” Int. J. Fracture Mech., Vol. 30, pp. R65–R72.

    Article  Google Scholar 

  16. Lua, Y.J, Liu, W.K. and Belytschko, T. (1990), “A Stochastic Damage Model for the Rupture Prediction of a Multi-Phase Solid: Part I: Parametric Studies,” accepted for publication in Int. J. Fracture Mech.

    Google Scholar 

  17. Lua, Y.J, Liu, W.K. and Belytschko, T. (1990), “A Stochastic Damage Model for the Rupture Prediction of a Multi-Phase Solid: Part II: Statistical Approach,” accepted for publication in to Int. J. Fracture Mech.

    Google Scholar 

  18. Belytschko, T. and Bachrach, W.E. (1986), “Simple Quadrilateral with High-Course Mesh Accuracy,” Comput. Methods Appl. Mech. Eng., Vol. 54, pp.279–301.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Belytschko, T. et al. (1984), “Hourglass Control in Linear and Nonlinear Problems,” Comput. Methods Appl. Mech. Eng., Vol. 43, pp. 251–276.

    Article  MATH  ADS  Google Scholar 

  20. Rosenblatt, M. (1952), “Remarks on a Multivariate Transformation,” Annals of Mathematical Statistics, Vol. 23, pp. 470–472.

    Article  MATH  MathSciNet  Google Scholar 

  21. Paris, P.C. and Erdogan, F. (1963), “A Critical Analysis of Crack Propagation Laws,” J. Basic Eng., ASME, Vol. 85, pp. 528–534.

    Article  Google Scholar 

  22. Sih, G.C. (1974), “Strain Energy Density Factor Applied to Mixed Mode Crack Problems,” Int. J. Fracture Mech., Vol. 10, pp.305–322.

    Article  Google Scholar 

  23. Neville, D.J. (1990), “Application of a New Statistical Function for Fracture Toughness to Failures at Microcracks in Brittle Materials,” Int. J. Fracture Mech., Vol. 44, pp. 79–96.

    Article  Google Scholar 

  24. Lewis, E.E. (1987), Introduction to Reliability Engineering,John Wiley & Sons,New York.

    Google Scholar 

  25. Neville, D.J. (1987), “A New Statistical Distribution Function for Fracture Tiughness,” Proc. R. Soc. Lond., A, Vol. 410, pp. 421–442.

    Article  MATH  ADS  Google Scholar 

  26. Lua, Y. J., Liu, W. K. and Belytschko, T. (1991), “Mixed Boundary Integral Equations Approach to the Study of the Effect of Microdefects on the Fatigue Life and Crack Trajectory,” in preparation.

    Google Scholar 

  27. Lua, Y. J., Liu, W. K. and Belytschko, T. (1991), “Application of Mixed Boundary Integral Equations to the Statistic Analysis of Curvilinear Fatigue Crack Growth,” in preparation.

    Google Scholar 

  28. Lua, Y. J., Liu, W. K. and Belytschko, T. (1991), “Stochastic Boundary Element Method to the Reliability Analysis of Curvilinear Fatigue Crack Growth,” in preparation.

    Google Scholar 

  29. Faravelli, L. (1989), “Response Surface Approach for Reliability Analysis,” J. of Eng. Mech. ASCE, Vol. 115, pp. 2763–2781.

    Article  Google Scholar 

  30. Faravelli, L. and Bigi, D. (1990), “Stochastic Finite Element for Crash Problems,” Structural Safety, Vol. 8, pp. 113–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W.K., Lua, Y.J., Belytschko, T. (1992). Stochastic Computational Mechanics in Brittle Fracture and Fatigue. In: Bellomo, N., Casciati, F. (eds) Nonlinear Stochastic Mechanics. IUTAM Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84789-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84789-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84791-2

  • Online ISBN: 978-3-642-84789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics