Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 86))

Abstract

Starting out from Anderson’s concept of procedural learning and White and Frederiksen’s approach of mental models, student modelling in the domain of intelligent tutoring systems is discussed with regard to cognitive approaches. Anderson’s approach provides a conceptual basis for analyzing knowledge acquisition processes with regard to cognitive skills. Within the framework of this approach Anderson models problem-solving behaviour and knowledge acquisition processes based on the description of an ideal student behaviour on the one hand (expert model), and incorrect behaviour on the other hand (bug library), applying production rules. White and Frederiksen focus primarily on conceptual knowledge and relate to the construct of mental models. Knowledge acquisition processes are modeled as a progression of mental models which the student passes through in the course of acquiring expertise. A more critical perspective reveals that Anderson lays emphasis on procedural learning, completely neglecting cognitive processes. The weak points of White and Frederiksen’s approach consist in the fact that knowledge acquisition processes are not described in psychological terms, but rather in physical terms. Although the above-mentioned ways of approaching the matter of knowledge acquisition differ widely, cognitive approaches allow a more differentiated analysis of the representation and acquisition of knowledge, thus providing an important basis for student modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R.: Language, memory and thought Hillsdale, NJ.: Erlbaum 1976.

    Google Scholar 

  2. Anderson, JJt.: The architecture of cognition. Cambridge, M.A: Harvard University Press 1983.

    Google Scholar 

  3. Anderson, Jit.: A theory of the origins of knowledge. Artificial Intelligence, 40,313–351,1989.

    Article  Google Scholar 

  4. Anderson, JH.: Analysis of Student Performance with the LISP Tutor. In N. Frederiksen, R. Glaser, A. Lesgold & M.G. Shafto (Eds.), Diagnostic Monitoring of Skill and Knowledge Acquisition (pp. 27–50). Hillsdale, N. J.: Erlbaum, 1990.

    Google Scholar 

  5. Anderson, J JR. & Reiser, B J.: The LISP tutor. Byte, 10 (4), 159–175,1985.

    Google Scholar 

  6. Anderson, J.R., Boyle, C. & Yost, G.: The geometry tutor. Proceedings of Ninth International Joint Conference on Artificial Intelligence (pp. 1–7). Los Altos, CA: Morgan Kaufmann, 1985.

    Google Scholar 

  7. Anderson, JJR., Farrel, R. & Sauers, R.: Learning to program in LISP. Cognitive Science, 8, 87–129,1984.

    Article  Google Scholar 

  8. Bobrow, D.G. (Ed.): Artificial Intelligence. Special volume on qualitative reasoning about physical systems. Amsterdam: North-Holland, 1984.

    Google Scholar 

  9. Brown, J.S. & Burton, RJR. : Diagnostic models for procedural bugs in mathematical skills. Cognitive Science, 2,155–191,1978.

    Article  Google Scholar 

  10. Brown, J.S., Burton, R.R. & de Kleer, J.: Pedagogical, natural language, and knowledge engineering techniques in SOPHIE I, II and in. In D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems (pp. 227–282). New York: Academic Press, 1982.

    Google Scholar 

  11. Burton, R.: Diagnosing bugs in a simple procedural skill In D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems (pp. 157–184). New York: Academic Press, 1982.

    Google Scholar 

  12. Carbonell, J.G.: AI in CAÍ: an artificial intelligence approach to computer-assisted instruction. IEEE Trans. Man-Mach. Syst, 11, 1970.

    Google Scholar 

  13. Collins, A. & Quillian, MJR.: Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 6,240–247,1969.

    Article  Google Scholar 

  14. Craik, K.: The nature of explanation. Cambridge: Cambridge University Press, 1943.

    Google Scholar 

  15. De Kleer, J. & Brown, J.S.: Assumptions and ambiguities in mechanistic mental models. In D. Centner & AL. Stevens (Eds.), Mental models (pp. 155–190). Hillsdale, NJ.: Lawrence Erlbaum, 1983.

    Google Scholar 

  16. Forbus, K.D. & Stevens, AX.: Using qualitative simulation to generate explanations. Report No. 4490. Cambridge, MA: BBN Laboratories, 1981.

    Google Scholar 

  17. Goldstein, I.: The genetic graph: a representation for the evolution of procedural knowledge. In D. Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems (pp. 51–77). New York: Academic Press, 1982.

    Google Scholar 

  18. Johnson-Laird, P.N.: Mental models. Cambridge: Cambridge University Press, 1983.

    Google Scholar 

  19. Kluwe, R.H. & Haider, H.: Modelle zur internen Repräsentation komplexer technischer Systeme. Sprache & Kognition, 9, 173–192, 1990.

    Google Scholar 

  20. Langley, P., Ohlsson, S. & Sage, S.:. Machine learning approach to student modelling. Technical Report CMU-RI-TR-84–7. Pittsburgh, PA: Robotics Institute, Carnegie-Mellon University, 1984.

    Google Scholar 

  21. Mandl, H. & Lesgold, A. (Eds.): Learning issues for intelligent tutoring systems. New York: Springer, 1988.

    Google Scholar 

  22. Ohlsson, S. & Langley, P.: Psychological evaluation of path hypothesis in cognitive diagnosis. In H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems (pp. 42–62). New York: Springer, 1988.

    Google Scholar 

  23. Payne, SJ.: Methods and mental models in theories of cognitive skill. In J. Self (Ed.), Artificial intelligence and human learning (pp. 69–87). London: Champan and Hall, 1988.

    Google Scholar 

  24. Poison, M.C. & Richardson, J J.: Foundations of Intelligent Tutoring Systems. Hillsdale, NJ.: Erlbaum, 1988.

    Google Scholar 

  25. Psotka, J., Massey, L.D. & Mutter, S.A. (Eds.).: Intelligent Tutoring Systems: Lessons learned. Hiüsdale, N J.: Erlbaum, 1988.

    Google Scholar 

  26. Reimann, P.: Towards general knowledge - diagnosis systems for student and user modeling. In H. Mandl, E. de Corte, N. Bennett & H.F. Friedrich (Eds.) Learning and Instruction. European Research in an International Context Volume 2.1. Social and cognitive Aspects of Learning and Instruction (pp. 349–365). Oxford: Pergamon Press, 1990.

    Google Scholar 

  27. Reiser, B.V., Anderson, J.R. & Farrel, R.G.: Dynamic Student modeling in an intelligent tutor for LISP programming. Proceedings of Ninth International Joint Conference of Artificial Intelligence (pp. 8–14). Los Altos, CA: Morgan Kaufmann, 1985.

    Google Scholar 

  28. Rumelhart, D.E. & Norman, D.A.: Representation in memory. CHIP Report 116. San Diego: University of California, 1983.

    Google Scholar 

  29. Sauers, R. & Farrel, R.: GRAPES user’s manual, Technical Report 1, Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA, 1982

    Google Scholar 

  30. Sleeman, D.H.: Inferring (mal) rules from pupils’ protocols. Proceedings of the European Conference on Artificial Intelligence (pp. 160–164). Qrsay, France, 1982.

    Google Scholar 

  31. Sleeman, D. & Brown, J.S. (Eds.): Intelligent Tutoring Systems. New York: Academic Press, 1982.

    Google Scholar 

  32. Van Lehn, KL: Student modelling. In M.C. Poison & J J. Richardson (Eds.), Foundations of Intelligent Tutoring Systems (pp. 55–78). Hillsdale, NJ.: Erlbaum, 1988.

    Google Scholar 

  33. White, B.Y. & Frederiksen, J.R.: Progressions of qualitative models as a foundation for intelligent learning environments. Report No. 6277. Cambridge, MA: BBN Laboratories Inc., 1986.

    Google Scholar 

  34. White, B.Y. & Frederiksen, J.R.: Qualitative models and intelligent learning environments. In R.W. Lawler & M. Yazdani (Eds.), Artificial Intelligence and education; Volume 1: Learning environments and tutoring systems (pp. 281–305). Norwood, NJ.: Ablex Publishing, 1987.

    Google Scholar 

  35. White, B.Y. & Frederiksen, J.R.: Causal model progressions as a foundation for intelligent learning environments. In WJ. Clancey & E. Soloway (Eds.), Artificial Intelligence. Special issue on artificial intelligence and learning environments (pp. 99–157). 42,1. Amsterdam: North-Holland, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mandl, H., Hron, A. (1992). Cognitive Theories as a Basis for Student Modelling. In: Tiberghien, A., Mandl, H. (eds) Intelligent Learning Environments and Knowledge Acquisition in Physics. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84784-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84784-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84786-8

  • Online ISBN: 978-3-642-84784-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics