Dynamic Theory of Planetary Magnetism and Laboratory Experiments

  • F. H. Busse
Part of the Springer Proceedings in Physics book series (SPPHY, volume 69)

Abstract

The problem of the origin of planetary magnetism is formulated as a bifurcation problem and some recent theoretical work on the generation of magnetic fields by buoyancy-driven convection in rotating spherical shells is briefly reviewed. Since the lack of laboratory experiments has hampered the theoretical progress, a possible configuration for a laboratory apparatus is proposed.

Keywords

Permeability Convection Mercury Manifold Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Carlson, J. B., Lodestone Compass: Chinese or Olmec Primacy?, Science 189, 753–760, 1975CrossRefADSGoogle Scholar
  2. [2]
    Larmor, J., How could a rotating body such as the sun become a magnet?, Brit. Ass. Advan. Sci. Rep. 159–160, 1919Google Scholar
  3. [3]
    Chapman, S., and Bartels, J., Geomagnetism, Vols 1 and 2, Oxford University Press, 1940Google Scholar
  4. [4]
    Cowling, T. G., The magnetic field of sun spots, Monthly Not. Roy. Astr. Soc. 94, 39–48, 1934ADSGoogle Scholar
  5. [5]
    Lowes, F. J., and Wilkinson, I., Geomagnetic dynamo: A laboratory model, Nature 198, 1158–1160, 1963CrossRefADSGoogle Scholar
  6. [6]
    Lowes, F. J., and Wilkinson, I., Geomagnetic dynamo: An improved laboratory model, Nature 219, 717–718, 1968CrossRefADSGoogle Scholar
  7. [7]
    Busse, F. H., Definition und Entwurf zweier magnetohydrodynamischer Experimente, Report. IRB, Kernforschungszentrum Karlsruhe, pp. 1–20, 1979Google Scholar
  8. [8]
    Moffat, H. K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, 1978Google Scholar
  9. [9]
    Fearn, D., Roberts, P. H., and Soward, A. M., Convection, stability and the dynamo, pp. 60–324 in “Energy stability and convection, G. P. Galdi and B. Straughan, eds. Pitman Research Notes in Mathematics, vol. 168, 1988Google Scholar
  10. [10]
    Zhang, K.-K., and Busse, F. H., Finite amplitude convection and magnetic field generation in a rotating spherical shell, Geophys. Astrophys. Fluid Dyn. 44, 33–53, 1988CrossRefMATHADSGoogle Scholar
  11. [11]
    Zhang K.-K., and Busse, F. H., Convection Driven Magnetohydrodynamic Dynamos in Rotating Spherical Shells, Geophys. Astrophys. Fluid Dyn. 49, 97–116, 1989CrossRefMATHADSGoogle Scholar
  12. [12]
    Zhang K.-K., and Busse, F. H., Generation of Magnetic Fields by Convection in a Rotating Spherical Fluid Shell of Infinite Prandtl Number, Phys. Earth Planet. Int. 59, 208–222, 1990ADSGoogle Scholar
  13. [13]
    Laj, C., Mazaud, A., Weeks, R., Fuller, M., and Herrero-Bervera, E., Geomagnetic reversal paths, Nature 351, 447, 1991CrossRefADSGoogle Scholar
  14. [14]
    Roberts, G. O., Dynamo action of fluid motions with two—dimensional periodicities, Phil. Trans. Roy. Soc. London A271, 411–454, 1972CrossRefMATHADSGoogle Scholar
  15. [15]
    Bevir, M. K., Possibility of electromagnetic self—excitation in liquid metal flows in fast reactors, Brit. J. Nucl. Energy 12, 455–458, 1973Google Scholar
  16. [16]
    Pierson, E. S., Electromagnetic Self—Excitation in the Liquid—Metal Fast Breeder Reactor, Nuclear Sci. Eng. 57, 155–163, 1975Google Scholar
  17. [17]
    Ponomarenko, Y. B., On the theory of the hydromagnetic dynamo, Zh. Prikl. Mech. Tech. Fiz. (USSR) 6, 49–51, 1973Google Scholar
  18. [18]
    Gailitis, A., The Helical MHD Dynamo, pp. 147–156 in “Topological Fluid Mechanics”, H. K. Moffatt and A. Tsinober, eds., Cambridge University Press, 1990Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • F. H. Busse
    • 1
  1. 1.Institute of PhysicsUniversity of BayreuthBayreuthFed. Rep. of Germany

Personalised recommendations