Skip to main content

Dynamic Theory of Planetary Magnetism and Laboratory Experiments

  • Conference paper
Evolution of Dynamical Structures in Complex Systems

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 69))

Abstract

The problem of the origin of planetary magnetism is formulated as a bifurcation problem and some recent theoretical work on the generation of magnetic fields by buoyancy-driven convection in rotating spherical shells is briefly reviewed. Since the lack of laboratory experiments has hampered the theoretical progress, a possible configuration for a laboratory apparatus is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, J. B., Lodestone Compass: Chinese or Olmec Primacy?, Science 189, 753–760, 1975

    Article  ADS  Google Scholar 

  2. Larmor, J., How could a rotating body such as the sun become a magnet?, Brit. Ass. Advan. Sci. Rep. 159–160, 1919

    Google Scholar 

  3. Chapman, S., and Bartels, J., Geomagnetism, Vols 1 and 2, Oxford University Press, 1940

    Google Scholar 

  4. Cowling, T. G., The magnetic field of sun spots, Monthly Not. Roy. Astr. Soc. 94, 39–48, 1934

    ADS  Google Scholar 

  5. Lowes, F. J., and Wilkinson, I., Geomagnetic dynamo: A laboratory model, Nature 198, 1158–1160, 1963

    Article  ADS  Google Scholar 

  6. Lowes, F. J., and Wilkinson, I., Geomagnetic dynamo: An improved laboratory model, Nature 219, 717–718, 1968

    Article  ADS  Google Scholar 

  7. Busse, F. H., Definition und Entwurf zweier magnetohydrodynamischer Experimente, Report. IRB, Kernforschungszentrum Karlsruhe, pp. 1–20, 1979

    Google Scholar 

  8. Moffat, H. K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, 1978

    Google Scholar 

  9. Fearn, D., Roberts, P. H., and Soward, A. M., Convection, stability and the dynamo, pp. 60–324 in “Energy stability and convection, G. P. Galdi and B. Straughan, eds. Pitman Research Notes in Mathematics, vol. 168, 1988

    Google Scholar 

  10. Zhang, K.-K., and Busse, F. H., Finite amplitude convection and magnetic field generation in a rotating spherical shell, Geophys. Astrophys. Fluid Dyn. 44, 33–53, 1988

    Article  MATH  ADS  Google Scholar 

  11. Zhang K.-K., and Busse, F. H., Convection Driven Magnetohydrodynamic Dynamos in Rotating Spherical Shells, Geophys. Astrophys. Fluid Dyn. 49, 97–116, 1989

    Article  MATH  ADS  Google Scholar 

  12. Zhang K.-K., and Busse, F. H., Generation of Magnetic Fields by Convection in a Rotating Spherical Fluid Shell of Infinite Prandtl Number, Phys. Earth Planet. Int. 59, 208–222, 1990

    ADS  Google Scholar 

  13. Laj, C., Mazaud, A., Weeks, R., Fuller, M., and Herrero-Bervera, E., Geomagnetic reversal paths, Nature 351, 447, 1991

    Article  ADS  Google Scholar 

  14. Roberts, G. O., Dynamo action of fluid motions with two—dimensional periodicities, Phil. Trans. Roy. Soc. London A271, 411–454, 1972

    Article  MATH  ADS  Google Scholar 

  15. Bevir, M. K., Possibility of electromagnetic self—excitation in liquid metal flows in fast reactors, Brit. J. Nucl. Energy 12, 455–458, 1973

    Google Scholar 

  16. Pierson, E. S., Electromagnetic Self—Excitation in the Liquid—Metal Fast Breeder Reactor, Nuclear Sci. Eng. 57, 155–163, 1975

    Google Scholar 

  17. Ponomarenko, Y. B., On the theory of the hydromagnetic dynamo, Zh. Prikl. Mech. Tech. Fiz. (USSR) 6, 49–51, 1973

    Google Scholar 

  18. Gailitis, A., The Helical MHD Dynamo, pp. 147–156 in “Topological Fluid Mechanics”, H. K. Moffatt and A. Tsinober, eds., Cambridge University Press, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Busse, F.H. (1992). Dynamic Theory of Planetary Magnetism and Laboratory Experiments. In: Friedrich, R., Wunderlin, A. (eds) Evolution of Dynamical Structures in Complex Systems. Springer Proceedings in Physics, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84781-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84781-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84783-7

  • Online ISBN: 978-3-642-84781-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics