Nonequilibrium Potentials

  • R. Graham
  • A. Hamm
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 69)


We review how the familiar notion of a thermodynamic potential can be generalized for a wide class of dynamical systems continuous in time and perturbed by weak noise; how, at least in principle, the description by means of nonequilibrium potentials can be reduced to discrete maps; and we present examples of nonequilibrium potentials for the one-dimensional logistic map. The latter result is used to calculate the critical exponent for the scaling of localized noise at the period doubling bifurcation sequence observed in numerical experiments by Mayer-Kress and Haken.

We dedicate this paper to Hermann Haken on the occasion of his 65th birthday.


Discrete Time System Period Doubling Total Entropy Noise Strength Continuous Time System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. D. Landau, E. M. Lifshitz: Statistical Physics( Pergamon, Oxford, 1958 )MATHGoogle Scholar
  2. [2]
    S. R. De Groot, P. Mazur: Non-equilibrium Thermodynamics( North-Holland, Amsterdam, 1962 )Google Scholar
  3. [3]
    L. Onsager: Phys. Rev. 37 (1931), 405; 38(1931), 2265; H. B. G. Casimir: Rev. Mod. Phys. 17(1945), 343CrossRefADSGoogle Scholar
  4. [4]
    M. S. Green: J. Chem. Phys. 20(1952), 1281CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    R. Graham: In Noise in nonlinear dynamical systems, Vol. 1, ed. by F. Moss, P. V. E. McClintock, ( Cambridge University Press, Cambridge, 1989 )Google Scholar
  6. [6]
    M. I. Freidlin, A. D. Wentzell: Random Perturbations of Dynamical Systems( Springer Verlag, Berlin, 1984 )MATHGoogle Scholar
  7. [7]
    R. L. Kautz: Phys. Rev. A38(1988), 2066CrossRefADSGoogle Scholar
  8. [8]
    R. Graham, H. Haken: Z. Physik 243(1971), 289; 245 (1971), 141CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    H. Haken: Phys. Rev. Lett. 13 (1964), 326CrossRefADSGoogle Scholar
  10. [10]
    R. Graham, Springer Tracts in Mod. Phys., Vol. 66( Springer Verlag, Berlin, 1973 )Google Scholar
  11. [11]
    R. Graham, T. Tél: Phys. Rev. A33 (1985), 1322Google Scholar
  12. [12]
    A. J. Lichtenberg, M. A. Lieberman: Regular and Stochastic Motion( Springer Verlag, Berlin, 1983 )MATHGoogle Scholar
  13. [13]
    H. Haken, G. Mayer-Kress: Z. Phys. B43 (1981), 185CrossRefMathSciNetGoogle Scholar
  14. [14]
    G. Mayer-Kress, H. Haken: J. Stat. Phys. 26 (1981), 149CrossRefMATHADSMathSciNetGoogle Scholar
  15. [15]
    J. P. Crutchfield, J. D. Farmer, B. A. Huberman: Phys. Rep. 92 (1982), 46CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    Yu. Kifer: Random Perturbations of Dynamical Systems(Birkhäuser, Boston, 1988 )Google Scholar
  17. [17]
    P. Talkner, P. Hänggi: loc. cit. [5], Vol. 2 Google Scholar
  18. [18]
    P. Grassberger: J. Phys. A22 (1989), 3283CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    P. D. Beale: Phys. Rev. A40 (1989), 3998CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    P. Reimann, P. Talkner: Helv. Phys. Acta 63 (1990), 845; 64 (1991), 947; and to be publishedGoogle Scholar
  21. [21]
    R. Graham, A. Hamm, T. Tél: Phys. Rev. Lett. 66 (1991), 3089CrossRefMATHADSMathSciNetGoogle Scholar
  22. [22]
    A. Hamm, R. Graham: J. Stat. Phys. 66 (1992)CrossRefMathSciNetGoogle Scholar
  23. [23]
    R. Graham, A. Hamm: In From Phase Transitions to Chaos, Topics in Modern Statistical Physics ed. by G. Györgyi, I. Kondor, L. Sasvâri, T. Tél ( World Scientific, Singapore, 1992 )Google Scholar
  24. [24]
    E. B. Vul, Ya. G. Sinai, K. M. Khanin: Usp. Math. Nauk 39 (1984), 3,3 (Engl. transi.: Russ. Math. Surv. 39 (1984), 3, 1 )MATHMathSciNetGoogle Scholar
  25. [25]
    Z. Kovâcs: J. Phys. A22 (1989), 5161CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    J. Crutchfield, M. Nauenberg, J. Rudnick: Phys. Rev. Lett. 46 (1981), 933CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    B. Shraiman, C. E. Wayne, P. C. Martin: Phys. Rev. Lett. 46 (1981), 935CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • R. Graham
    • 1
  • A. Hamm
    • 1
  1. 1.Fachbereich PhysikUniversität GH EssenEssen 1Fed. Rep. of Germany

Personalised recommendations