Modulational Polarization Instabilities and Disorder in Birefringent Optical Fibers

  • S. Trillo
  • S. Wabnitz
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 67)

Abstract

We study the nonlinear dynamics of modulated waves in a nonlinear birefringent fiber. We show that, in analogy with the scalar case that is described by the nonlinear Schrödinger equation, a close correspondence may exist between the unstable behavior of two coupled periodic waves and the simple phase-space description of an equivalent nonlinear oscillator that is associated with a truncated Fourier expansion of the fields. The regular motion along these one-dimensional trajectories may break up into disordered spatio-temporal patterns.

Keywords

Anisotropy Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Yariv, Quantum Electronics (Wiley, New York, 1975) Chapt. 16–18.Google Scholar
  2. [2]
    A.J. Lichtenberg, and M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983 )MATHGoogle Scholar
  3. S. Wiggins, Global Bifurcations and Chaos, ( Springer, New York, 1988 ).MATHCrossRefGoogle Scholar
  4. [3]
    S.A. Akhmanov, and R.V. Khokhlov, Problems of Nonlinear Optics ( Gordon and Breach, New York, 1972 ).Google Scholar
  5. [4]
    M.I. Dykman, and G.G. Tarasov, Soy. Phys. Solid State 24, 1361 (1982).Google Scholar
  6. [5]
    J. Yumoto, and K. Otsuka, Phys. Rev. Lett. 54, 1806 (1985).ADSCrossRefGoogle Scholar
  7. [6]
    B. Daino, G. Gregori, and S. Wabnitz, J. Appl. Phys. 58, 4512 (1985)ADSCrossRefGoogle Scholar
  8. B. Daino, G. Gregori, and S. Wabnitz, Opt. Lett. 11, 42 (1986).ADSCrossRefGoogle Scholar
  9. [7]
    G. Gregori, and S. Wabnitz, in Optical Bistability III, H.M. Gibbs, et al., eds. (Springer, Berlin, 1986) pp. 359–362Google Scholar
  10. [8]
    G. Gregori, and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986).ADSCrossRefGoogle Scholar
  11. [8]
    H.G. Winful, Opt. Lett. 11, 33 (1986).ADSCrossRefGoogle Scholar
  12. [9]
    S. Wabnitz, Phys. Rev. Lett. 58, 1415 (1987).ADSCrossRefGoogle Scholar
  13. [10]
    M.V. Tratnik, and J.E. Sipe, Phys. Rev. A 35, 2965 (1987)ADSCrossRefGoogle Scholar
  14. M.V. Tratnik, and J.E. Sipe, Phys. Rev. A 35, 2976.ADSCrossRefGoogle Scholar
  15. [11]
    E. Caglioti, S. Trillo, and S. Wabnitz, Opt. Lett. 12, 1044 (1987)ADSCrossRefGoogle Scholar
  16. [11]
    E. Caglioti, S. Trillo, and S. Wabnitz, in Advances in Nonlinear Dynamics and Stochastic Processes II, G. Paladin, and A. Vulpiani, eds., ( World Scientific, Singapore, 1987 ) pp. 225.Google Scholar
  17. [12]
    S. Trillo, and S. Wabnitz, Phys. Rev. A 36, 3881 (1987)ADSCrossRefGoogle Scholar
  18. S. Trillo, and S. Wabnitz, J. Opt. Soc. of Am. B 5, 483 (1988).ADSCrossRefGoogle Scholar
  19. [13]
    D. David, D.D. Holm, and M.V. Tratnik, Physics Letters A 137, 355 (1989)ADSMathSciNetCrossRefGoogle Scholar
  20. D. David, D.D. Holm, and M.V. Tratnik, 138, 29 (1989).MathSciNetGoogle Scholar
  21. [14]
    S. Trillo, S. Wabnitz, R.H. Stolen, G. Assanto, C.T. Seaton, and G.I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).ADSCrossRefGoogle Scholar
  22. [15]
    S. Trillo, S. Wabnitz, N. Finlayson, W.C. Banyai, C.T. Seaton, G.I. Stegeman, and R.H. Stolen, Appl. Phys. Lett. 53, 837 (1988)ADSCrossRefGoogle Scholar
  23. S. Trillo, S. Wabnitz, N. Finlayson, W.C. Banyai, C.T. Seaton, G.I. Stegeman, and R.H. Stolen, IEEE J. Quantum Electron. QE-25, 104 (1989).ADSCrossRefGoogle Scholar
  24. [16]
    S.F. Feldman, D.A. Weinberger, and H.G. Winful, Opt. Lett 15, 311 (1990).ADSCrossRefGoogle Scholar
  25. [17]
    N.I. Zheludev, Sov. Phys. Usp. 32, 357 (1989).ADSCrossRefGoogle Scholar
  26. [18]
    D. David, D.D. Holm, and M.V. Tratnik, Physics Reports 187, 281 (1990).MATHADSMathSciNetCrossRefGoogle Scholar
  27. [19]
    V.I. Bespalov, and V.I. Talanov, JETP Lett. 3, 307 (1966).ADSGoogle Scholar
  28. [20]
    T.J. Benjamin, and J.E. Feir, J. Fluid Mech. 27, 417 (1967).MATHADSCrossRefGoogle Scholar
  29. [21]
    H.C. Yuen, and W.E. Ferguson, Jr., Phys. Fluids 21, 1275 (1978).ADSCrossRefGoogle Scholar
  30. [22]
    E. Fermi, J. Pasta, and S. Ulam, in Collected Papers of Enrico Fermi, E. Segrè, ed. ( Univ. of Chicago, Chicago, 1965 ), Vol. 2, p. 978.Google Scholar
  31. [23]
    N. Ercolani, M.G. Forest, and D.W. McLaughlin, Physica 18D 472 (1986); Geometry of the Modulational Instability. Part III: Homo-clinic Orbits for the periodic sine-Gordon equation,University of Arizona Preprint (1987), and Physica D (1990), and refs. therein.Google Scholar
  32. [24]
    E.R. Tracy, H.H. Chen, and Y.C. Lee, Phys. Rev. Lett. 53, 218 (1984)ADSMathSciNetCrossRefGoogle Scholar
  33. E.R. Tracy, H.H. Chen, Phys. Rev. A 37, 815 (1988).ADSMathSciNetCrossRefGoogle Scholar
  34. [25]
    N.N. Akhmediev, and V.I. Korneev, Theor. and Math. Physics 69, 1089 (1986).MATHADSMathSciNetCrossRefGoogle Scholar
  35. [26]
    H.T. Moon, Phys. Rev. Lett. 64, 412 (1990).ADSCrossRefGoogle Scholar
  36. [27]
    M.J. Ablowitz, and B.M. Herbst, SIAM J. Appl. Math. (April 1990).Google Scholar
  37. [28]
    E. Infeld, Phys. Rev. Lett. 47, 717 (1981).ADSMathSciNetCrossRefGoogle Scholar
  38. [29]
    G. Cappellini, and S. Trillo, J. Opt. Soc. Am. B (April 1991).Google Scholar
  39. [30]
    A.R. Bishop, in Partially Integrable Evolution Equations in Physics, R. Conte and N. Boccara, eds. ( Kluver Academic, Amsterdam, 1990 ) pp. 1–38.Google Scholar
  40. [31]
    A.R. Bishop, M.G. Forest, D.W. McLaughlin, and A.E. Overman II, Phys. Lett. A 144, 17 (1990).ADSCrossRefGoogle Scholar
  41. [32]
    S. Trillo, and S. Wabnitz, Optics Letters, in press (1991).Google Scholar
  42. [33]
    S.Wabnitz, Phys. Rev. A 38, 2018 (1988)ADSCrossRefGoogle Scholar
  43. S. Trillo, and S. Wabnitz, J. Opt. Soc. Am. B 6, 238 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Trillo
    • 1
  • S. Wabnitz
    • 1
  1. 1.Fondazione Ugo BordoniRomeItaly

Personalised recommendations