Advertisement

Role of Disorder on the Dynamics of a Nonlinear Model for DNA Thermal Denaturation

  • M. Peyrard
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 67)

Abstract

The dynamics of thermal denaturation of DNA is a good example in which nonlinearity coexits with disorder. The amplitude of the motions is so high that bonds break and the base sequence is inhomogeneous since it contains the genetic code. Using a simple nonlinear model, we study the role of local inhomogeneities or of extended disorder on the dynamics of the localized excitations and on the denaturation rate by numerical simulations at constrained temperature. Approximate analytical results are obtained for the trapping of the breatherlike excitations by isolated defects and the statistical mechanics of the disordered molecule.

Keywords

Transfer Operator Thermal Denaturation Morse Potential Localize Excitation Denaturation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl and S. Litwin, Proc. Nat. Acad. Sci. USA 777, 7222 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    S. Yomosa, Phys. Rev. A27, 2120 (1983)ADSMathSciNetCrossRefGoogle Scholar
  3. S. Yomosa, Phys. Rev. A30, 474 (1984)ADSCrossRefGoogle Scholar
  4. 3.
    S. Takeno and S. Homma, Prog. Theor. Phys. 77, 548 (1987)ADSMathSciNetCrossRefGoogle Scholar
  5. 4.
    Chun-Ting Zhang, Phys. Rev. A35, 886 (1987)ADSMathSciNetGoogle Scholar
  6. 5.
    V. Muto, J. Halding, P.L. Christiansen and A.C. Scott, J. Biomol. Struct. Dyn. 5, 873 (1988)Google Scholar
  7. 6.
    V. Muto, A.C. Scott and P.L. Christiansen, Physics Letters A 136, 33 (1989)ADSCrossRefGoogle Scholar
  8. 7.
    M. Peyrard and A.R. Bishop, Phys. Rev. Lett 62, 2755 (1989)ADSCrossRefGoogle Scholar
  9. 8.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  10. 9.
    Y. Gao and E. W. Prohofsky, J. Chem. Phys. 80, 2242 (1984)ADSCrossRefGoogle Scholar
  11. 10.
    Y. Gao, K. V. Devi-Prasad and E. W. Prohofsky, J. Chem. Phys. 80, 6291 (1984)ADSCrossRefGoogle Scholar
  12. 11.
    S. Nose, J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  13. 12.
    L.L. Van Zandt, Phys. Rev. A 40, 6134 (1990)CrossRefGoogle Scholar
  14. M. Techera, L. Daemen and E.W. Prohofsky, Phys. Rev. A 42, 5033 (1990)ADSCrossRefGoogle Scholar
  15. Van Zandt, Phys. Rev. A 42, 5036 (1990)ADSCrossRefGoogle Scholar
  16. 13.
    E.W. Prohofsky, K.C. Lu, L.L. Van Zandt and B.P. Putnam, Physics Letters A 70, 492 (1979)Google Scholar
  17. H. Teitelbaum and S.W. Englander, J. Mol. Biol. 92, 55 (1975)CrossRefGoogle Scholar
  18. 14.
    S. E. Trullinger and K. H. Sasaki, Physica D 28, 181 (1987)ADSMathSciNetCrossRefGoogle Scholar
  19. 15.
    Y. Kivshar and B. Malomed, Rev. Mod. Phys. 61, 763 (1989) and private communicationGoogle Scholar
  20. 16.
    M. B. Fogel, Nonlinear order parameter fields: I Soliton dynamics, II Thermodynamics of a model impure system. phD Cornell University (1977)Google Scholar
  21. 17.
    Yu. Kivshar, S.A. Gredeskul, A. Sanchez and L. Vasquez, Phys. Rev. Lett. 64, 1693 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Peyrard
    • 1
  1. 1.Ondes et Structures Cohérentes, Faculté des SciencesUniversité de Bourgogne, Physique Non LinéaireDijonFrance

Personalised recommendations