Modulated Dark Soliton: Features of Creation and Propagation

  • V. V. Konotop
  • V. E. Vekslerchik
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 67)


We study the “stable” nonlinear Schrodinger equation with inititial conditions being close to the dark soliton one (modulated dark soliton). It is considered in the framework of the perturbation theory based on the inverse scattering technique. Modulations result in both the variation of soliton parameters and creation of new solitons. Corresponding problems are treated analytically. The criterion for the perturbation theory to be valid is stated.


Dark Soliton Initial Modulation Phase Fluctuation Nonlinear Schrodinger Equation Dark Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Zakharov and A. B. Shabat, Zh. Exp. Teor. Fiz. 64, 1627 (1973) [Sov.Phys.JETP 37, 823 (1973)].Google Scholar
  2. 2.
    A.Hasegawa and F.Tappert, Appl.Phys.Lett. 23, 171 (1973).CrossRefADSGoogle Scholar
  3. 3.
    P.-A.Belander and P.Mathieu, Appl.Opt. 26, 111 C1977).Google Scholar
  4. 4.
    P. Emplit, J. P. Hamaide, F.Reynand, G.Froehly, and A. Bart.helem, 0 t. Comm. 62, 29 (1987).Google Scholar
  5. 5.
    D.Krokel, N J.Halas, G.Giuliani, and D.Grischkovsky, Phys.Rev.Lett. 60, 29 (1988).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Weiner, J.P.Heritage, R. J. Hawkins, R. N. Thurson, E. M. Krischner, D. E. eaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).ADSGoogle Scholar
  7. 7.
    W. J. Tomlinson, R. G. Hawkins, A.. Weiner, J.P.Heritage, and R. N. Thurston. J. Opt. Soc. Am. B 6, 329 (1989).CrossRefADSGoogle Scholar
  8. 8.
    S. A. Gredescul., Yu.S.Kivshar, and. M. V. Yanovskaya, Phys. Rev.A 41, 3994 (1990).CrossRefADSGoogle Scholar
  9. 9.
    W.. Tomlinson, R. Stolen, R. J. Hawkins, and A. M. Weiner, in Nonlinear Guided-Wave Phenomena: Physics and Applications, 2, 132 (1989).Google Scholar
  10. 10.
    Yu. S. Kivshar, Phys Rev.A, 42, 1757 C1990 ).Google Scholar
  11. 11.
    F. G. Bass, V. V. Konotop, S. A. Puzenko, and V. E. Vekslerchik (submitted to press).Google Scholar
  12. 12.
    S. A. Gredescul and Yu.S.Kivshar, Opt. Commun. Cin press).Google Scholar
  13. 13.
    V. V. Konotop and V. E. Vekslerchik, J. Phys. A. Cin press).Google Scholar
  14. 14.
    L. A. Takhtajan and L. D. Faddeev. Hamiltonian Approach in Solitari Theory (Moscow, Nauka, 1986)(In Russian)Google Scholar
  15. 15.
    V. V. Konotop, Kvant. Elektron.ika 16, 1032 (1989) [Sov.J. Quant.Elec ron. 19, 669 (1989)].Google Scholar
  16. 16.
    N.J. Halas, D. Krokel, and D. Grischkowsky, Appl.Phys.Lett. 50, 886 (1987).CrossRefADSGoogle Scholar
  17. 17.
    F. G. Bass, Yu.S.Kivshar, V. V. Konotop, and S. A. Puzenko, Opt. Commun. 68, 385 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • V. V. Konotop
    • 1
  • V. E. Vekslerchik
    • 1
  1. 1.Institute for Radiophysics and ElectronicsAcademy of SciencesKharkovUkraine

Personalised recommendations