Linear Chaos

  • B. V. Chirikov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 67)


The controversial phenomenon of quantum (wave) chaos is reviewed using a simple analogy with classical linear waves in cavities. Estimates for the main statistical properties of wave dynamics are evaluated and discussed. The transient nature of wave chaos is emphasized and explained in detail.


Correspondence Principle Wave Dynamic Quantum Chaos Dynamical Chaos Linear Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A Lichtenberg and M. Lieberman, Regular and StochasticMotion, Springer, 1983Google Scholar
  2. G.M. Zaslaysky, Chaos in Dynamic Systems, Harwood, New Jork, 1985.Google Scholar
  3. 2.
    Ya.G. Sinai, Usp. Mat. Nauk, 25, N 2 (1970) 141.MATHMathSciNetGoogle Scholar
  4. 3.
    L.A Bunimovich, Zh. Eksper. Teor. Fiz., 89 (1985) 1452.Google Scholar
  5. 4.
    V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, 1968.Google Scholar
  6. 5.
    J. Wersinger, E. Ott, and J. Finn, Phys. Fluids, 21 (1978) 2263.ADSCrossRefGoogle Scholar
  7. 6.
    I. Kornfeld, S. Fomin and Ya. Sinai, Ergodic Theory, Springer, 1982.Google Scholar
  8. 7.
    S.S. Abdullaev, G.M. Zaslaysky, 7h. Exper. Teor. Fiz., 80 (1981) 524; 85 (1983) 1573; 87 (1984) 763.Google Scholar
  9. 8.
    AV. Chigarev, Yu. V. Chigarev, Akustich. 7h., 24 (1978) 765.Google Scholar
  10. 9.
    P. Seba. Phys. Rev. Lett., 64 (1990) 1855.Google Scholar
  11. 10.
    B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Soy. Sci. Rev. 2 (1981) 209MATHMathSciNetGoogle Scholar
  12. B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Physica, 33 (1988) 77.MATHMathSciNetCrossRefGoogle Scholar
  13. 11.
    B.V. Chirikov, Time-Dependent Quantum Systems, Proc. Les Houches Summer School on Chaos and Quantum Physics, Elsevier, 1990.Google Scholar
  14. 12.
    A.I. Shnirelman, Usp. Mat. Nauk, 29, N6 (1974) 181; On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motion, Addendum to the book: V.F. Lasutkin. The KAM Theory and Asymptotics of Spectrum of Elliptic Operators, Springer, 1990.Google Scholar
  15. 13.
    D.L. Shepelyansky, Physica, D 8 (1983) 208ADSCrossRefGoogle Scholar
  16. G. Casati, B.V. Chirikov, I. Guarneri, and D.L. Shepelyansky, Phys. Rev. Lett., 56 (1986) 2437.Google Scholar
  17. 14.
    G.P. Berman and G.M. Zaslaysky, Physica, 91 (1978) 450.MathSciNetCrossRefGoogle Scholar
  18. 15.
    K. Nakamura, A. Bishop, and A. Shudo, Phys. Rev., 39 (1989) 422.Google Scholar
  19. 16.
    S.S. Abdullaev, Zh. Tekhn. Fiz., 51 (1981) 697.Google Scholar
  20. 17.
    F. Rannou, Astron. Astroph., 31 (1974) 289MATHADSGoogle Scholar
  21. F. Rannou, Y. Levy. Phys. Lett., A 88 (1982) 1MathSciNetCrossRefGoogle Scholar
  22. F. Rannou, J. McCauley, Ibid., 115 (1986) 433.Google Scholar
  23. 18.
    B.V. Chirikov, Wiss. Z., 24 (1975) 215.Google Scholar
  24. 19.
    M. Gell-Mann and J. Hartle, Quantum Mechanics in the Light of Quantum Cosmology. Proc. 3rd. Intern. Symp. on The Foundations of Quantum Mechanics in the Light of New Technology, Tokyo. 1989.Google Scholar
  25. 20.
    F.M. Izrailev, Phys. Lett., 125 (1987) 250.MathSciNetCrossRefGoogle Scholar
  26. 21.
    E. Heller, Phys. Rev. Lett., 53 (1984) 1515.ADSMathSciNetCrossRefGoogle Scholar
  27. 22.
    R. Jensen et al., Phys. Rev. Lett., 63 (1989) 2771.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • B. V. Chirikov
    • 1
  1. 1.Institute of Nuclear PhysicsNovosibirskRussia

Personalised recommendations