Advertisement

Translational Diffusion and Fluid Phase Connectivity in Multi-Component, Multi-Phase Lipid Bilayer Membranes

  • W. L. C. Vaz
  • T. E. Thompson
  • P. F. Almeida
  • T. Bultmann
  • E. C. C. Melo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 66)

Abstract

We have used the fluorescence recovery after photobleaching technique (FRAP) to investigate the long range translational diffusion of a fluid-phase soluble, gel-phase insoluble fluorescent lipid derivative (NBD-dilauroylphosphatidylethanolamine or NBD-1-palmitoyl-2-oleoylphosphatidylethanolamine) in lipid bilayers made up of two or more lipid components as a function of temperature and chemical composition of the bilayers. The FRAP experiment gives information on two aspects of the diffusivity of the test particle (fluorescent probe): 1) the diffusion coefficient is related to the characteristic recovery time for the fluorescence after photobleaching, and 2) the freedom of diffusion in the membrane plane over long distances (H10μm) is related to the fraction of initial fluorescence recovered at ‘infinite’ time after photobleaching. For the case where solid and fluid phases co-exist in the plane of the lipid bilayer the two parameters taken together provide information on the connectivity of the fluid (or, reciprocally, the gel) phase domains and, when applicable, to what extent an archipelago of gel phase domains slows diffusion in the fluid phase. The results indicate that the gel phase in some cases forms highly elliptical domains, which at a very low mass fraction (≤20%) impede percolation of the fluid phase, whereas in others the gel phase domains are more centro-symmetric so that the fluid phase is continuous at a very low mass fraction (≤10%). A comparison of the experimental results with existing theoretical descriptions of diffusion in an archipelago becomes possible in systems of the latter type and was undertaken.

Keywords

Fluid Phase Percolation Threshold Fluorescence Recovery After Photo Translational Diffusion Fluorescence Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.L.C. Vaz (1991) Comments Mol. Cell. Biophys., in press.Google Scholar
  2. [2]
    T.E. Thompson, M.B. Sankaram and R.L. Biltonen (1991) Comments Mol. Cell. Biophys., in press.Google Scholar
  3. [3]
    T.M. Jovin and W.L.C. Vaz (1989) Meth. Enzymol. 172, 471–513.CrossRefGoogle Scholar
  4. [4]
    W.L.C. Vaz, E.C.C. Melo and T.E. Thompson (1990) Biophys. J. 58, 273–275.CrossRefGoogle Scholar
  5. [5]
    W. Xia and M.F. Thorpe (1988) Phys. Rev. A 38, 2650–2656.CrossRefGoogle Scholar
  6. [6]
    W.L.C. Vaz, E.C.C. Melo and T.E. Thompson (1989) Biophys. J. 56, 869–876.CrossRefGoogle Scholar
  7. [7]
    T. Bultmann, W.L.C. Vaz, E.C.C. Melo, R.B. Sisk and T.E. Thompson (1991) Biochemistry 30, 5573–5579.CrossRefGoogle Scholar
  8. [8]
    P.F. Almeida, T.E. Thompson and W.L.C. Vaz (1991) Biophys. J. 59, 613a.Google Scholar
  9. [9]
    M. Saxton (1987) Biophys. J. 52, 989–997; and (1989) Biophys. J. 56, 615-622.CrossRefGoogle Scholar
  10. [10]
    W.L.C. Vaz, D. Hallmann, R.M. Clegg, A. Gambacorta and M. De Rosa (1985) Eur. Biophys. J. 12, 19–24.CrossRefGoogle Scholar
  11. [11]
    P.F. Almeida (1991) unpublished results.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. L. C. Vaz
    • 1
  • T. E. Thompson
    • 2
  • P. F. Almeida
    • 2
  • T. Bultmann
    • 1
  • E. C. C. Melo
    • 3
  1. 1.Max-Planck-Institut für Biophysikalische ChemieGöttingenFed. Rep. of Germany
  2. 2.Department of BiochemistryUniversity of VirginiaCharlottesvilleUSA
  3. 3.Centro de Tecnologia Química e Biológica- ISTOeirasPortugal

Personalised recommendations