Modelling Phase Transformations for the Calculation of Internal Stresses During Fast Heating and Cooling in Steels

  • S. Denis
  • D. Farias
  • A. Simon
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


A model for the prediction of phase transformations during fast heating and cooling can improve the understanding and control of the microstructures and mechanical properties in processes like surface hardening treatments, welding... Such a model could be used more conveniently than the graphical representations (isothermal and continuous heating and cooling transformation diagrams). It is also absolutely necessary in programs predicting the build up of internal stresses during the treatment and the residual stresses at the end of the treatment. In this paper, we present a mathematical model coupling phase transformations and temperature evolutions for a cylindrical specimen during a rapid thermal cycle.


Residual Stress Rapid Heating Intercritical Annealing Carbon Martensite High Carbon Martensite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. HILDENWALL : Prediction of the residual stresses created during quenching : especially the quench response in carburized steels. Dissertation n°39, Linköping University (Sweden), 1979.Google Scholar
  2. 2.
    M. MELANDER : A computational and experimental investigation of induction and laser hardening. Dissertation N° 124, Linköping University (Sweden), 1985.Google Scholar
  3. 3.
    F. FERNANDES, S. DENIS, A. SIMON : Prévision de l’évolution thermique et structurale des aciers au cours de leur refroidissement continu. Mém. et études scient. Revue Métallurgie, 1986, 83, 355.Google Scholar
  4. 4.
    W.A. JOHNSON and R.F. MEHL : Reaction kinetics in processes of nucleation and growth. Trans. AIME, 1939, 135, 416.Google Scholar
  5. 5.
    M. AVRAMI : Kinetics of phase change. Part I : General Theory. J. Chem. Phys. 1939, 7, 1103. Part II : Transformation time relations for random distribution of nucleï. J. Chem. Phys. 1940, 8, 212. Part III : Granulation, phase change and microstructure. J. Chem. Phys. 1941, 9, 177.CrossRefGoogle Scholar
  6. 6.
    G.R. SPEICH and A. SZIRMAE: Formation of austenite from ferrite and ferrite-carbide aggregates. Trans. AIME, 1969, 245, 1063.Google Scholar
  7. 7.
    B. KARLSSON : Transformation kinetics for the formation of austenite from a ferritic-pearlitic structure. Z. Metalkde, 1972, 63, 160.Google Scholar
  8. 8.
    A.P. SUROVTSEV and V.V. YAROVOI : Features of polymorphic transformation kinetics during heating for low carbon steels - Met. Sci. Heat Treat. 1984, 9, 649.CrossRefGoogle Scholar
  9. 9.
    A.P. SUROVTSEV and V.V. YAROVOI, V.E. SUKHANOV et A.J. PROKLOVA Kinetics of polymorphic transformation in low-carbon steals - Met. Sci. Heat Treat. 1986, 2, 104.CrossRefGoogle Scholar
  10. 10.
    V.M. ZALKIN : Some controversial problems of the kinetics of the transformation of pearlite into austenite during heating of steel - Met. Sci. Heat Treat. 1986, 1–2, 96.CrossRefGoogle Scholar
  11. 11.
    G.R. SPEICH, V.A. DEMAREST et R.L. MILLER : Formation of austenite during intercritical annealing of dual-phase steels. Metall. Trans. 1981, 12 A, 1419.Google Scholar
  12. 12.
    D. FARIAS, S. DENIS, A. SIMON: Modélisation des transformations de phases des aciers en cycles thermiques rapides. Proc. Ecole de Printemps CNRS-EPFL “Lasers de puissance et Traitement des matériaux” 27–31 mai 1991 (à paraître).Google Scholar
  13. 13.
    B. KARLSSON et L.E. LARSSON : Homogenization by two-phase diffusion. Mater. Sci. Eng. 1975, 20, 165.Google Scholar
  14. 14.
    M.G. ASHBY et K.E. EASTERLING : The transformation hardening of steel surfaces by laser beams I - Hypoeutectoïd steels. Acta Metall. 1984, 32, 1935.CrossRefGoogle Scholar
  15. 15.
    W. LI : Laser transformation hardening of steel surfaces. Doctorat Thesis, University of Luleä (Sweden) 1984.Google Scholar
  16. 16.
    H.U. FRITSCH, H.W. BERGMANN : Influence of the carbon diffusion during laser transformation hardening. Numerical simulation and experimental verification.European Scientific Laser Workshop on Mathematical Simulation (organized by H.W. BERGMANN) Lisabon 1989. Sprechsaal Publishing Group - D 8630 COBURG, 31.Google Scholar
  17. 17.
    D. FARIAS, S. DENIS, A. SIMON : Les transformations de phases en cycle thermique rapide et leur modélisation - Cas d’un acier XC42. Traitement Thermique, 1990, 237, 63.Google Scholar
  18. 18.
    D. FARIAS : Traitement thermique laser de l’acier XC42 et modélisation des transformations de phases en cycles thermiques rapides au chauffage et au refroidissement. Thèse de Doctorat I.N.P.L. Nancy 1991 (à venir).Google Scholar
  19. 19.
    J. WYSZKOWSKI : Grain growth of austenite on rapid heating. Iron and Steel, 1970, 44, 77.Google Scholar
  20. 20.
    R.A. GRANGE : The rapid heat treatment of steel. Metall. Trans. 1971, 2 A, 65.CrossRefGoogle Scholar
  21. 21.
    H. IKAWA, S. SHIN, H. OSHIGE et Y. MEKUCHI : Austenite grain growth of steel during thermal cycles. Trans. JWS, 1977, 8, 46.Google Scholar
  22. 22.
    F.M.B. FERNANDES : Modélisation et calcul de l’évolution de la température et de la microstructure au cours du refroidissement continu des aciers. Thèse de Doctorat de l’institut National Polytechnique de Lorraine, Nancy 1985.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1992

Authors and Affiliations

  • S. Denis
    • 1
  • D. Farias
    • 1
  • A. Simon
    • 1
  1. 1.Laboratoire de Science et Génie des Matériaux MétalliquesEcole des Mines de NancyNANCY CedexFrance

Personalised recommendations