The Influence of Welding Stresses and Distortions on the Stability of Shells of Revolution

  • F. G. Rammerstorfer
  • I. Skrna-Jakl
  • M. Zelezny
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

This paper deals with the computation of the elastic and elastoplastic stability of welded shells (cylindrical and spherical shells) under mechanical or thermal loading. It is assumed that the residual welding stresses and welding distortions are either known or can be predicted by numerical methods or analytical approximations. The determination of the bifurcation or limit points is performed by numerical discretization methods using finite element or finite difference methods. The influence of welding stresses is simulated either directly by initial stresses introduced into the governing equations or by a fictitious temperature field which leads to a thermal stress field similar to the residual welding stress field. Welding distortions are treated as geometrical imperfections. Specific emphasis lies on circular cylindrical shells with circumferential butt welds. Some fundamental considerations regarding buckling due to fictitious or real thermal loads are presented.

Keywords

Fatigue Welding Cylin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Karlsson, L., ‘Thermal Stresses in Welding’ in Thermal Stresses I (Ed. R.B. Hetnarski), pp. 300–389, North-Holland Publ. Comp. 1986.Google Scholar
  2. [2]
    Rybicky, E.F. and R.B. Stonesifer, ‘Computation of Residual Stresses due to Multipass Welds in Piping Systems’, J. Pressure Vessel Techn. 101, 149–154 (1979).CrossRefGoogle Scholar
  3. [3]
    Wang, Z. and T. Inoue, ‘Viscoplastic Constitutive Relation Incorporating Phase Transformation - Application to Welding’, Mater. Sci.Technol. 1, 899–903 (1985).Google Scholar
  4. [4]
    Macherauch, E. and V. Hauk (Ed.), Residual Stresses in Science and Technology, Deutsche Gesellschaft für Metallkunde, Oberursel, FRG, 1987.Google Scholar
  5. [5]
    Radaj, D., Wärmeeinwirkungen des Schweißens, Springer-Verlag Berlin Heidelberg New York London Paris Tokyo 1988.Google Scholar
  6. [6]
    Rammerstorfer, F.G., K. Dorninger and J. Ployer, ‘Nonlinear Stability Problems Concerned, with Buried Pipelines for Hot Water Supply’, ASME PVP-Vol.169, 57–62 (1989).Google Scholar
  7. [7]
    Rammerstorfer, F.G. and F.D. Fischer, ‘A Method for the Experimental Determination of Residual Stresses in Axisymmetric Composite Cylinders’, J. Engng. Mater. Technol. - in press.Google Scholar
  8. [8]
    Ziegler F. and F.G. Rammerstorfer, ‘Thermoelastic Stability’ in Thermal Stresses III (Ed. R.B. Hetnarski), pp. 107–189, North-Holland Publ. Comp. 1989.Google Scholar
  9. [9]
    Ramm, E., Geometrisch nichtlineare Elastostatik und Finite Elemente, Habilitationsschrift, Univ. of Stuttgart, FRG 1975.Google Scholar
  10. [10]
    Brendel, B., Geometrisch nichtlineare Elasto-Stabilität, Doctoral Thesis, Univ. of Stuttgart, FRG 1979.Google Scholar
  11. [11]
    Ravn-Jensen, K. and V. Tvergaard, ‘Effect of Residual Stresses on Plastic Buckling of Cylindrical Shell Structures’, Int. J. Solids Structures 26, 993–1004 (1990).CrossRefGoogle Scholar
  12. [12]
    Häfner, L., Einfluß einer Rundschweißnaht auf die Stabilität und Traglast des axialbelasteten Kreiszylinders, Doctoral Thesis, Univ. of Stuttgart, FRG, 1982.Google Scholar
  13. [13]
    Hutchinson, J.W., R.C. Tennyson and D.B. Muggeridge, ‘Effect of a Local Ax- isymmetric Imperfection on the Buckling Behavior of a circular Cylindrical Shell under Axial Compression’, AAIA Journal 9, 48–52 (1971).CrossRefGoogle Scholar
  14. [14]
    Amazigo, J.C. and B. Budiansky, ‘Asymptotic Formulas for the Buckling Stresses of Axially Compressed Cylinders with Localized or Random Axisymmetric Imperfections’, J. Appl. Mech. 39, 179–184 (1972).CrossRefMATHGoogle Scholar
  15. [15]
    Koiter, W.T., ‘The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells Under Axial Compression’, Roy. Netherl. Acad. Sci., Ser. B, 66, 265–279 (1963).MATHGoogle Scholar
  16. [16]
    DASt-Richtlinie 013 Beulsicherheitsnachweise für Schalen, Deutscher Ausschuß für Stahlbau, Edition July 1980.Google Scholar
  17. [17]
    Esslinger, M. and B. Geier, Postbuckling Behavior of Structures, CISM Courses and Lectures, No. 236, Springer-Verlag, Wien/New York 1975.MATHGoogle Scholar
  18. [18]
    ABAQUS User’s Manual, HKS Inc., Providence, RI, 1987.Google Scholar
  19. [19]
    Kerr, A.D., ‘Analysis of Thermal Track Buckling in the Lateral Plane’, Acta Mechanica 30, 17–50 (1978).CrossRefMATHGoogle Scholar
  20. [20]
    Bushneil, D., ‘Computerized Analysis of Shells - Governing Equations’, Comp. & Struct. 18, 471–536 (1984).CrossRefGoogle Scholar
  21. [21]
    Flügge, W., Stresses in Shells, Springer-Verlag, Berlin 1960.MATHGoogle Scholar
  22. [22]
    Bushnell, D., Computerized Buckling Analysis, Nijhoff Publ., Dortrecht, The Netherlands 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1992

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • I. Skrna-Jakl
    • 1
  • M. Zelezny
    • 2
  1. 1.Institute of Lightweight Structures and Aerospace EngineeringVienna Technical UniversityViennaAustria
  2. 2.Institute of Applied and Technical PhysicsVienna Technical UniversityViennaAustria

Personalised recommendations