Skip to main content

Principles of Cancer Chemotherapy in Children

  • Chapter
Cancer in Children

Part of the book series: UICC International Union Against Cancer ((1360))

  • 120 Accesses

Abstract

Chemotherapy has made a fundamental contribution to the treatment of childhood cancer and has led to a marked increase in the cure rate of most of these diseases. The antineoplastic drugs currently used in clinical practice exert their cytotoxic effect by interfering with the synthesis or function of DNA. Figure 1 indicates schematically the site of action of commonly used anticancer drugs in paediatric oncology. Most of these drugs are cell-cycle specific, i.e. they are active only in a given phase of the cell cycle.

This research was supported by the Associazione Italiana per la Ricerca sul Cancro and by the CNR Progetto Finalizzato “Oncologia,” grant 88.00843.44.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elber F, Giuliano A, Eckardt J et al. (1987) Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol 5: 21–26

    Google Scholar 

  2. Flamant F, Hill C (1984) The improvement in survival associated with combined chemotherapy in childhood rhabdomyosarcoma: a historical comparison of 345 patients in the same center. Cancer 53: 2417–2421

    Article  PubMed  CAS  Google Scholar 

  3. Salmon SE (1979) Kinetics of minimal residual disease. Recent Results Cancer Res 65: 5–15

    Article  Google Scholar 

  4. Goldie JH, Goldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63: 1727–1733

    PubMed  CAS  Google Scholar 

  5. Lemerle J, Voûte PA, Tournade MF et al. (1983) Effectiveness of preoperative chemotherapy in Wilms’ tumor: results of an International Society of Paediatric Oncology (SIOP) clinical trial. J Clin Oncol 1: 604–609

    PubMed  CAS  Google Scholar 

  6. Rosen G, Caparros B, Huvos AG et al. (1982) Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 49: 1221–1230

    Article  PubMed  CAS  Google Scholar 

  7. Mastrangelo R, Riccardi R, Corbo S et al. (1984) Prediction of clinical response to glucocorticoids in children with acute lymphoblastic leukemia. Eur Paediatr Haematol Oncol 1: 33–36

    Article  Google Scholar 

  8. Riehm H, Reiter A, Schrappe M et al. (1987) Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr 199 /3: 151–160

    Article  PubMed  CAS  Google Scholar 

  9. Lasorella A, Riccardi R, Tartaglia RL et al. (1991) High dose carboplatin in the treatment of malignant tumors. XXIII SIOP meeting. Med Pediatr Oncol (in press)

    Google Scholar 

  10. Frei E, Canellos GP (1980) Dose: a critical factor in cancer chemotherapy. Am J Med 69: 585–594

    Article  PubMed  Google Scholar 

  11. Philip T, Bernard J, Zucker J et al. (1987) High dose chemoradiotherapy with bone marrow transplantation as consolidation treatment in neuroblastoma. An unselected group of stage IV patients over 1 year of age. J Clin Oncol 5: 266–271

    PubMed  CAS  Google Scholar 

  12. Rivera GK, Santana V, Mahmopud H et al. (1989) Acute lymphocytic leukemia of childhood: the problem of relapses. Bone Marrow Transplant 4: 80–85

    PubMed  Google Scholar 

  13. Berdel WE, Danhauser-Riedl S, Steinhauser G et al. (1989) Various human hematopoietic growth factors (interleukin-3, GM-CSF, G-CSF) stimulate clonal growth of nonhematopoietic tumor cells. Blood 73 /1: 80–83

    PubMed  CAS  Google Scholar 

  14. Bonadonna G, Valagussa P (1981) Dose-response effect of adjuvant chemotherapy in breast cancer. N Engl J Med 316: 1499

    Google Scholar 

  15. Garde P, Mackintosh FR, Rosenberg SA (1983) A dose and time response analysis of the treatment of Hodgkin’s disease with MOPP chemotherapy. J Clin Oncol 1: 146

    Google Scholar 

  16. Hryniuk W, Levine MN (1986) Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol 4: 1162

    PubMed  CAS  Google Scholar 

  17. Dodwell DJ, Gurney H, Thatcher N (1990) Dose intensity in cancer chemotherapy. Br J Cancer 61: 789–794

    Article  PubMed  CAS  Google Scholar 

  18. Riehm H, Godner H, Henze G et al. (1983) Acute lymphoblastic leukemia: treatment results in three BFM studies (1970–1981). In: Murphy SB, Gilbert JR (eds) Leukemia research advances in cell biology and treatment. Elsevier Biomedical, New York, pp 251–263

    Google Scholar 

  19. Doz F, Brugieres L, Bastian G et al. (1990) Clinical trial and pharmacokinetics of carboplatin 560mg/m2 in children. Med Pediatr Oncol 18: 459–465

    Article  PubMed  CAS  Google Scholar 

  20. Balis FM, Holcenberg JS, Bleyer WA (1983) Clinical pharmacokinetics of commonly used anticancer drugs. Clin Pharmacokinet 8: 202–232

    Article  PubMed  CAS  Google Scholar 

  21. Crom WR, Glynn-Barnhart AM, Rodman JH et al. (1987) Pharmacokinetics of anticancer drugs in children. Clin Pharmacokinet 12: 168–213

    Article  PubMed  CAS  Google Scholar 

  22. Evans WE, Relling MV (1989) Clinical pharmacokinetics-pharmacodynamics of anticancer drugs. Clin Pharmacokinet 16: 327–336

    Article  PubMed  CAS  Google Scholar 

  23. Newell DR (1990) Pharmacokinetic determinants of the activity and toxicity of antitumor agents. Cancer Surv 8 /3: 557–603

    Google Scholar 

  24. Evans WE, Crom WR, Stewart CF et al. (1984) Methotrexate systemic clearance influences the probability of relapse in children with standard-risk acute lymphocytic leukaemia. Lancet 1: 359–362

    Article  PubMed  CAS  Google Scholar 

  25. Borsi JD, Moe PJ (1987) Systemic clearance of methotrexate in the prognosis of acute lymphoblastic leukemia in children. Cancer 60: 3020–3024

    Article  PubMed  CAS  Google Scholar 

  26. Rodman JH, Abromowitch M, Sinkule JA (1987) Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a phase I trial. J Clin Oncol 5: 1000–1014

    Google Scholar 

  27. Adair CG, McElany JC (1986) Studies on the mechanism of gastrointestinal absorption of melphalan and chlorambucil. Cancer Chemother Pharmacol 17: 95–98

    Article  PubMed  CAS  Google Scholar 

  28. Balis FM, Savitch JL, Bleyer WA (1983) Pharmacokinetics of oral methotrexate in children. Cancer Res 43: 2342–2345

    PubMed  CAS  Google Scholar 

  29. Zimm S, Collins JM, Riccardi R et al. (1983) Variable bioavailability of oral mercaptopurine. N Engl J Med 308: 1005–1009

    Article  PubMed  CAS  Google Scholar 

  30. Pinkerton CR, Glasgow JFT, Welshman SG et al. (1980) Can food influence the absorption of methotrexate in children with acute lymphoblastic leukemia? Lancet 2: 944–946

    Article  PubMed  CAS  Google Scholar 

  31. Riccardi R, Balis M, Ferrara P et al. (1986) Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 3: 319–324

    Article  PubMed  CAS  Google Scholar 

  32. Evans WE, Rodman JH, Petros WP et al. (1990) Individualized doses of chemotherapy for children with acute lymphoblastic leukemia (ALL) (abstr). Proc Am Soc Clin Oncol 9: 69

    Google Scholar 

  33. Riccardi R, Vigersky RA, Barnes S et al. (1982) Methotrexate levels in the interstitial space and seminiferous tubule of rat testis. Cancer Res 42: 1617–1619

    PubMed  CAS  Google Scholar 

  34. Blasberg R, Groothuis D (1986) Chemotherapy of brain tumors. Physiological and pharmacokinetic considerations. Semin Oncol 13: 70–82

    PubMed  CAS  Google Scholar 

  35. Roll D, Zubrad C (1962) Mechanism of drug absorption and excretion. Passage of drugs in and out of central nervous system. Annu Rev Pharmacol 2: 109–128

    Article  Google Scholar 

  36. Balis FM, Savitch JL, Bleyer WA et al. (1985) Remission induction of meningeal leukemia with high-dose intravenous methotrexate. J Clin Oncol 3: 485–489

    PubMed  CAS  Google Scholar 

  37. Morra E, Lazzarino M, Inverardi D et al. (1986) Systemic high-dose ara-C for the treatment of meningeal leukemia in adult acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Clin Oncol 4: 1207–1211

    CAS  Google Scholar 

  38. Shapiro WR, Young DG, Mehta BM (1975) Methotrexate distribution in cerebrospinal fluid after intravenous, ventricular, and lumbar injections. N Engl J Med 291: 161–166

    Article  Google Scholar 

  39. Riccardi A, Servidei T, Lasorella A et al. (1989) High-performance liquid chromatographic assay for cytosine arabinoside and uracil arabinoside in cerebrospinal fluid and plasma. J Chromatogr 497: 302–307

    Article  PubMed  CAS  Google Scholar 

  40. Riccardi R, Riccardi A, Di Rocco C, Carelli G, Tartaglia RL, Lasorella A, Servidei T, Mast-rangelo R (1992) Cerebrospinal fluid pharmacokinetics of carboplatin in children with brain tumors. Cancer Chemother Pharmacol (in press )

    Google Scholar 

  41. Van der Vijgh WJF, Klein I (1986) Protein binding of five platinum compounds. Cancer Chemother Pharmacol 18: 129–132

    Article  PubMed  Google Scholar 

  42. Curt GA, Clendeninn NY, Chabner BA (1984) Drug resistance in cancer. Cancer Treat Rep 68: 87–99

    PubMed  CAS  Google Scholar 

  43. Morrow CS, Cowan KH (1988) Mechanisms and clinical significance of multidrug resistance. Oncology 2: 55–68

    PubMed  CAS  Google Scholar 

  44. Van der Bliek AM, Brost P (1989) Multidrug resistance. Adv Cancer Res 52: 165–203

    Article  PubMed  Google Scholar 

  45. Gros P, Neriah YB, Croop JM et al. (1986) Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323: 728–731

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein Fojo AT, Ueda K et al. (1990) Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J Clin Oncol 8: 128–136

    PubMed  CAS  Google Scholar 

  47. Bourhuis J, Benard J, Hartman O et al. (1989) Correlation of MDR1 gene expression with chemotherapy in neuroblastoma. JNCI 81: 401–405

    Google Scholar 

  48. Chan HSL, Thorner PS, Haddad G et al. (1990) Immunohistochemical detection of P-glyco-protein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8: 689–704

    PubMed  CAS  Google Scholar 

  49. Goldstein LT, Galski H, Fojo A et al. (1989) Expression of a multidrug resistance gene in human cancers. JNCI 81: 116–124

    PubMed  CAS  Google Scholar 

  50. Dalton WS, Grogan TM, Meltzer PS et al. (1989) Drug-resistance in multiple myloma and non-Hodgkin’s lymphoma: detection of P- glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7: 415–424

    PubMed  CAS  Google Scholar 

  51. Miller TP, Grogan TM, Dalton WS et al. (1991) P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 9: 17–24

    PubMed  CAS  Google Scholar 

  52. Chabner BA, Wilson W (1991) Reversal of multidrug resistance. J Clin Oncol 9: 4–6

    PubMed  CAS  Google Scholar 

  53. Bielack SS, Erttmann R, Winkler K et al. (1989) Doxorubicin: effect of different schedules on toxicity and anti-tumour efficacy. Eur J Cancer Clin Oncol 25: 873–882

    Article  PubMed  CAS  Google Scholar 

  54. Grochow LB, Jones RJ, Brundrett RB et al. (1989) Pharmacokinetics of busulphan: correlation with veno-occlusive disease in patients undergoing bone marrow transplatantion. Cancer Chemother Pharmacol 25: 55–61

    Article  PubMed  CAS  Google Scholar 

  55. Reece PA, Stafford I, Abbott RL et al. (1989) Two-versus 24-hour infusion of cisplatin: pharmacokinetic considerations. J Clin Oncol 7: 270–275

    PubMed  CAS  Google Scholar 

  56. Calvert AH, Newell DR, Gumbrell LA et al. (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7: 1748–1756

    PubMed  CAS  Google Scholar 

  57. Clark PI, Slevin ML (1987) The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet 12: 223–252

    Article  PubMed  CAS  Google Scholar 

  58. Desai ZR, van der Berg HW, Bridges JM et al. (1982) Can severe vincristine neurotoxicity be prevented? Cancer Chemother Pharmacol 8: 211–214

    Article  PubMed  CAS  Google Scholar 

  59. Gonzales-Vitale JC, Hayes DM, Cvitkovic E et al. (1977) The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer 39: 1362–1371

    Article  PubMed  CAS  Google Scholar 

  60. Vomer RB, Pritchard J, Barrett TM (1985) Renal toxicity of cisplatin in children. J Pediatr 106: 659–663

    Article  Google Scholar 

  61. Abelson HT, Fasburg MT, Beardsley GP et al. (1983) Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol 1: 208–216

    PubMed  CAS  Google Scholar 

  62. DeFronzo RA, Abeloff M, Braine H et al. (1974) Renal dysfunction after treatment with Isophosphamide (NSC-109724). Cancer Chemother Rep (part I ) 58: 375

    Google Scholar 

  63. Sangster G, Kaye SB, Caiman KC et al. (1981) Failure of 2-mercaptoethane sulphonate sodium (mesna) to protect against ifosfamide nephrotoxicity. Eur J Cancer Clin Oncol 20: 435

    Article  Google Scholar 

  64. Moncrief M, Foot A (1989) Fanconi syndrome after ifosfamide. Cancer Chemother Pharmacol 23: 121–122

    Article  Google Scholar 

  65. Bode U, Seif SM, Levine AS (1980) Studies on the antidiuretic effect of cyclophosphamide: vasopressin release and sodium excretion. Med Pediatr Oncol 8: 295–303

    Article  PubMed  CAS  Google Scholar 

  66. Robertson GL, Bhoopalam N, Zelkowitz LJ (1973) Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med 132: 717–720

    Article  PubMed  CAS  Google Scholar 

  67. Weber BL, Tanyer G, Poplack GD et al. (1987) Transient acute hepatotoxicity of high dose of methotrexate therapy during childhood. NCI Monogr 5: 207–212

    PubMed  Google Scholar 

  68. Zachariae H, Kragballe K, Sogaard H (1980) Methotrexate induced liver cirrhosis. Br J Dermatol 102: 407–413

    Article  PubMed  CAS  Google Scholar 

  69. Bleyer WA (1985) Cancer chemotherapy in infants and children. Pediatr Clin North Am 32 /3: 557–574

    PubMed  CAS  Google Scholar 

  70. Slavin RE, Dias MA, Sarai R (1978) Cytosine arabinoside induced gastrointestinal toxic alterations in sequential chemotherapeutic protocols. Cancer 42: 1747–1759

    Article  PubMed  CAS  Google Scholar 

  71. Goodell B, Leventhal B, Henderson E (1970) Cytosine arabinoside in acute granulocytic leukemia. Clin Pharmacol Ther 12: 599–606

    Google Scholar 

  72. Einhorn M, Davidsohn I (1964) Hepatotoxicity of mercaptopurine. JAMA 188: 802–806

    Article  PubMed  CAS  Google Scholar 

  73. Raine J, Bowman A, Wallendszus K et al. (1991) Hepatopathy-thrombocytopenia syndrome-a complication of dactinomycin therapy for Wilms’ tumor: a report from the United Kingdom Childrens Cancer Study Group. J Clin Oncol 9: 268–273

    PubMed  CAS  Google Scholar 

  74. Oberlin O, Tournade MF, Daltroff G et al. (1989) Hepatic toxicity compatible with veno-occlusive disease after actinomycin D in non irradiated Wilms tumor. Med Pediatr Oncol 17: 317

    Google Scholar 

  75. Grochow LB, Jones RJ, Brundrett RB et al. (1989) Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 25: 55–61

    Article  PubMed  CAS  Google Scholar 

  76. Weiss HD, Walker MD, Wiernik PH (1974) Neurotoxicity of commonly used antineoplastic agents. N Engl J Med 291: 75–81

    Article  PubMed  CAS  Google Scholar 

  77. McHaney VA, Thebadoux MA, Hayes FA et al. (1983) Hearing loss in children receiving cisplatin therapy. J Pediatr 102: 314–317

    Article  PubMed  CAS  Google Scholar 

  78. Kobayashy H, Ohashi N, Watanabe Y et al. (1987) Clinical features of Cisplatin vestibulotoxicity and hearing loss. ORL J Otorhinolaryngol Relat Spec 49: 67–72

    Article  Google Scholar 

  79. Legha SS, Dimery IW (1985) High-dose cisplatin administration without hypertonic saline: observation of disabling neurotoxicity. J Clin Oncol 3: 1373–1378

    PubMed  CAS  Google Scholar 

  80. Herzog RH, Hines JD, Herzig GP et al. (1987) Cerebellar toxicity with high-dose cytosine arabinoside. J Clin Oncol 5: 927–932

    Google Scholar 

  81. Grossman L, Baker MA, Sutton DMC et al. (1983) Central nervous system toxicity of high-dose cytosine arabinoside. Med Pediatr Oncol 11: 246–250

    Article  PubMed  CAS  Google Scholar 

  82. Shaw PJ, Procopis PG, Menser MA et al. (1991) Bulbar and pseudobulbar palsy complicating therapy with high-dose cytosine arabinoside in children with leukemia. Med Pediatr Oncol 19: 122–125

    Article  PubMed  CAS  Google Scholar 

  83. Pratt CB, Green AA, Horowit ME et al. (1986) Central nervous system toxicity following the treatment of pediatric patients with ifosfamide/ mesna. J Clin Oncol 4: 1253–1261

    PubMed  CAS  Google Scholar 

  84. Bleyer WA (1978) The clinical pharamcology of methotrexate. Cancer 41: 36–51

    Article  PubMed  CAS  Google Scholar 

  85. Geiser CF, Bishop K, Jaffe N et al. (1975) Adverse effects of intrathecal methotrexate in children with acute leukemia in remission. Blood 45: 189–195

    PubMed  CAS  Google Scholar 

  86. Gagliano RG, Costanzi JJ (1976) Paraplegia following intrathecal methotrexate. Cancer 37: 1663–1668

    Article  PubMed  CAS  Google Scholar 

  87. Bleyer WA, Orake JC, Chabner BA (1973) Neurotoxicity and elevated cerebrospinal fluid methotrexate concentration in meningeal leukemia. N Engl J Med 289: 770–773

    Article  PubMed  CAS  Google Scholar 

  88. Bleyer WA (1981) Neurologic sequelae of methotrexate and ionizing radiation: a new classification. Cancer Treat Report 65: 89–98

    Google Scholar 

  89. Ochs JJ, Berger P, Brecher ML et al. (1980) Computed tomography brain scans in children with acute lymphocytic leukemia receiving methotrexate alone as central nervous system prophylaxis. Cancer 45 /9: 2274–2278

    Article  PubMed  CAS  Google Scholar 

  90. Riccardi R, Brouwers P, Di Chiro G et al. (1985) Abnormal computed tomography brain scans in children with acute lymphoblastic leukemia: serial long-term follow up. J Clin Oncol 3: 12–18

    PubMed  CAS  Google Scholar 

  91. Brouwers P, Fedio P, Riccardi R (1984) Attentional deficits in long-term survivors of childhood acute lymphoblastic leukemia (ALL). J Clin Neuropathol 6: 325–336

    CAS  Google Scholar 

  92. Peylan-Ramu N, Poplack DG, Simon RM (1977) Computer-assisted tomography in methotrexate encephalopathy. J Comput Assist Tomogr 1: 216–221

    Article  PubMed  CAS  Google Scholar 

  93. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypothesis. FASEB J 4: 3076–3086

    PubMed  CAS  Google Scholar 

  94. von Hoff DD, Maxwell WL, Basa et al. (1979) Risk factors of doxorubicin-induced congestive heart failure. Ann Intern Med 91: 710–717

    Google Scholar 

  95. Goorin MA, Borow KM, Goldman A et al. (1981) Congestive heart failure due to Adriamycin cardiotoxicity: its natural history in children. Cancer 47: 2810–2816

    Article  PubMed  CAS  Google Scholar 

  96. Hausdorf G, Morf G, Beron G et al. (1988) Long-term doxorubicin cardiotoxicity in childhood: non-invasive evaluation of the contractile state of diastolic filling. Br Health J 60: 309–315

    CAS  Google Scholar 

  97. Goorin AM, Chauvenet AR, Perez-Atayde AR et al. (1990) Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer. J Pediatr 116 /1: 144–147

    PubMed  CAS  Google Scholar 

  98. Lipshultz SE, Colan SAD, Gelber RD et al. (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324 /12: 808–815

    Article  PubMed  CAS  Google Scholar 

  99. Shapiro J, Gotfried M, Lishner M et al. (1990) Reduced cardiotoxicity of doxorubicin by a 6- hour infusion regimen. A prospective randomized evaluation. Cancer 65: 870–873

    Article  Google Scholar 

  100. Legha SS, Benjamin RS, Mackay B et al. (1982) Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 96: 133–139

    PubMed  CAS  Google Scholar 

  101. Bieling P, Winkler K, Bielack S (1991) Continuous infusion (CI) versus short term infusion (SI) of doxorubicin (DOX) in osteosarcoma (OS). Proceedings of ASCO. J Clin Oncol 10: 308

    Google Scholar 

  102. Cazin B, Gorin NC, Laporte JP et al. (1986) Cardiac complications after bone marrow transplantation: a report on a series of 63 consecutive transplantations. Cancer 57: 2061–2069

    Article  PubMed  CAS  Google Scholar 

  103. Trigg ME, Finlay JL, Bozdech M et al. (1987) Fatal cardiac toxicity in bone marrow transplant patients receiving cytosine arabinoside, cyclophosphamide and total body irradiation. Cancer 59: 38–42

    Article  PubMed  CAS  Google Scholar 

  104. Oberlin O, Zucker JM, Demeocq F et al. (1988) Ifosfamide (Ifos) in Ewing’s sarcoma (ES) no clear benefit of Ifos vs cyclophosphamide but significant toxicity (abstr). Proc Am Soc Clin Oncol 6

    Google Scholar 

  105. Kushner JP, Hansen VL, Hammar SP (1975) Cardiomyopathy after widely separated courses of Adriamycin exacerbated by actinomycin-D and mithramycin. Cancer 36: 1577–1584

    Article  PubMed  CAS  Google Scholar 

  106. Smith PJ, Ekert H, Waters KD et al. (1977) High incidence of cardiomyopathy in children treated with Adriamycin and DTIC in combination chemotherapy. Cancer Treat Rep 61: 1736–1738

    PubMed  CAS  Google Scholar 

  107. Mason JW, Bristow MR, Billingham ME et al. (1979) Invasive and noninvasive methods of assessing Adriamycin cardiotoxic effects in man: superiority of histopathologic assessment using endomyocardial biopsy. Cancer Treat Rep 62: 857–864

    Google Scholar 

  108. Proceedings of the workshop on mitoxantrone cardiotoxicity. Cancer Treat Symp 3: 71

    Google Scholar 

  109. Bristow MR (1982) Cardiac monitoring of patients receiving anthracyclines. In: Muggia FM, Young CW, Carter SK (eds) Anthracycline antibiotics in cancer therapy. Nijhoff, The Hague, pp 348–351

    Google Scholar 

  110. Alexander J, Dainiak N, Berger HJ et al. (1979) Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 300: 279–283

    Article  Google Scholar 

  111. Holoye PY, Livrea MA, MacKay B et al. (1978) Bleomycin hypersensitivity pneumonitis. Ann Intern Med 88: 47–49

    PubMed  CAS  Google Scholar 

  112. Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin: a new antineoplastic agent. Cancer 4: 903–913

    Article  Google Scholar 

  113. Stover DE (1989) Pulmonary toxicity. In: De Vita VT, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. Lippincott, Philadelphia, pp 2162–2169

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riccardi, R., Lasorella, A., Nuti, M., Mastrangelo, R. (1992). Principles of Cancer Chemotherapy in Children. In: Voûte, P.A., Barrett, A., Lemerle, J. (eds) Cancer in Children. UICC International Union Against Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84722-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84722-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84724-0

  • Online ISBN: 978-3-642-84722-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics