Skip to main content

Oncogenes and Chromosomal Aberrations

  • Chapter
Cancer in Children

Part of the book series: UICC International Union Against Cancer ((1360))

  • 109 Accesses

Abstract

The first chromosomal aberration associated with cancer was reported in 1960 by Nowell and Hungerford [1]. A small deleted chromosome called Philadelphia chromosome, or Ph1, was consistently found in leukaemic cells of patients with chronic myeloid leukaemia (CML). In the past 15 years the use of advanced cytogenetic techniques in studying various tumours has led to the conclusion that most cancers involve a chromosomal defect, often specific and therefore clinically relevant for diagnosis and prognosis [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowell PC, Hungerford DA (1960) A minute chromsome in human chronic granulocytic leukemia. Science 132: 1497

    Google Scholar 

  2. Sandberg AA (1990) The chromosomes in human cancer and leukemia, 2nd edn. Elsevier, New York

    Google Scholar 

  3. Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221: 227–236

    Article  PubMed  CAS  Google Scholar 

  4. Bishop JM (1981) Enemies within: the genesis of retrovirus oncogenes. Cell 23: 5–6

    Article  PubMed  CAS  Google Scholar 

  5. Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311

    Article  PubMed  CAS  Google Scholar 

  6. Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multistep carcinogenesis. Science 222: 771–778

    Article  PubMed  CAS  Google Scholar 

  7. Dryja TP, Cavenee W, White R, Rapaport JM, Petersen R, Albert DM, Bruns GAP (1984) Homozygosity of chromosome 13 in retino-blastoma. N Engl J Med 310: 550–553

    Article  PubMed  CAS  Google Scholar 

  8. Orkin SH, Goldman DS, Sallan SE (1984) Development of homozygosity for chromosome 1 l markers in Wilms’ tumor. Nature 309: 172–174

    Article  PubMed  CAS  Google Scholar 

  9. Sager R (1989) Tumor suppressor genes: the puzzle and the promise. Science 246: 1406–1412

    Article  PubMed  CAS  Google Scholar 

  10. Rous P (1910) A transmissible avian neoplasm (sarcoma of the common fowl). J Exp Med 12: 696–705

    Article  PubMed  CAS  Google Scholar 

  11. Gallo RC, Wong-Staal F (1982) Retroviruses as etiologic agents of some animal and human leukemias and lymphomas and as tools for elucidating the molecular mechanism of leukaemogenesis. Blood 60: 545–557

    PubMed  CAS  Google Scholar 

  12. Varmus H (1989) An historical overview of oncogenes. In: Weinberg RA (ed) Oncogenes and the molecular origins of cancer. Cold Spring Harbor Laboratory, New York, pp 3–44

    Google Scholar 

  13. Bishop JM (1991) Molecular themes in oncogenesis. Cell 64: 235–248

    Article  PubMed  CAS  Google Scholar 

  14. Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–152

    Article  PubMed  CAS  Google Scholar 

  15. Tabin, CJ, Bradley SM, Bargmann CJ, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanisms of activation of a human oncogene. Nature 300: 143–149

    Article  PubMed  CAS  Google Scholar 

  16. Hagemeijer A, Smit EME, Bootsma D (1979) Improved identification of chromosomes of leukemic cells in methotrexate treated culture. Cytogenet Cell Genet 23: 208–212

    Article  PubMed  CAS  Google Scholar 

  17. Mitelman F (1988) Catalogue of chromosome aberrations in cancer, 3rd edn. Liss, New York

    Google Scholar 

  18. Schimke RT (1984) Gene amplification in cultured animal cells. Cell 37: 705–713

    Article  PubMed  CAS  Google Scholar 

  19. Rowley JD (1982) Identification of the constant chromosome regions involved in human hematologic malignant disease. Science 216: 749–751

    Article  PubMed  CAS  Google Scholar 

  20. Klein G (1983) Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men. Cell 32: 311–315

    Article  PubMed  CAS  Google Scholar 

  21. Croce CM (1987) Role of chromosome translocations in human neoplasia. Cell 49: 155–156

    Article  PubMed  CAS  Google Scholar 

  22. Boehm T, Rabbits T (1989) The human T-cell receptor genes are targets for chromosomal abnormalities in T-cell tumors. FASEB J 3: 2344–2359

    PubMed  CAS  Google Scholar 

  23. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47: 19–28

    Article  PubMed  CAS  Google Scholar 

  24. Mellentin JD, Smith SD, Cleary (1989) Lyl-1, a novel gene altered by chromosomal translocation in T-cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58: 7783

    Article  Google Scholar 

  25. Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR (1989) The gene SCL is expressed during early hematopoiesis and encodes a differentiation related DNA-binding motif. Proc Natl Acad Sci USA 86: 10128–10132

    Article  PubMed  CAS  Google Scholar 

  26. Ohno H, Takimoto G, McKeithan TW (1990) The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60: 991–997

    Article  PubMed  CAS  Google Scholar 

  27. de Klein A, Geurts van Kessel A, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300: 765–767

    Article  PubMed  Google Scholar 

  28. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99

    Article  PubMed  CAS  Google Scholar 

  29. Konopka JB, Watanabe SM, Witte OM (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  30. Daley GQ, van Etten R, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210 gene of the Philadelphia chromosome. Science 247: 824–830

    Article  PubMed  CAS  Google Scholar 

  31. van der Plas DC, Hermans ABC, Soekarman D, Smit EME, de Klein A, Smadja N, Alimena G, Goudsmit R, Grosveld G, Hagemeijer A (1989) Cytogenetic and molecular analysis in Philadelphia negative CML. Blood 73: 1038–1044

    PubMed  Google Scholar 

  32. Hermans A, Heisterkamp N, von Lindern M, van Baal S, Meijer D, van der Plas D, Wiedemann LM, Groffen J, Bootsma D, Grosveld G (1987) Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51: 33–40

    Article  PubMed  CAS  Google Scholar 

  33. von Lindern M, Poustka A, Lehrach H, Grosveld G (1990) The (6;9) chromosome translocation, associated with a specific subtype of acute non lymphocytic leukemia leads to aberrant transcription of a target gene on 9q34. Mol Cell Biol 10: 4016–4026

    Google Scholar 

  34. Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249: 1577–1580

    Article  PubMed  CAS  Google Scholar 

  35. Kamps MP, Murre C, Sun X, Baltimore D (1990) A new homeobox gene contributes the DNA binding domain of the t(1;9) translocation protein in pre-B-ALL. Cell 60: 547–555

    Article  PubMed  CAS  Google Scholar 

  36. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM (1984) Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 81: 4940–4944

    Article  PubMed  CAS  Google Scholar 

  37. Machotka SV, Garrett CT, Schwartz AM, Callahan R (1989) Amplification of the protooncogenes int-2, c-erb B2 and c-myc in human breast cancer. Clin Chim Acta 184: 207–218

    Article  PubMed  CAS  Google Scholar 

  38. Friend SH, Bernards R, Rogdi S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646

    Article  PubMed  CAS  Google Scholar 

  39. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EYHP (1987) Human retinoblastoma susceptibility gene: cloning identification and sequence. Science 235: 1394–1399

    Article  PubMed  CAS  Google Scholar 

  40. Horowitz JM, Yandell DW, Park SH, Canning S, Whyte P, Buchkowitch K, Harlow E, Weinberg RA, Dryja TP (1989) Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–940

    Article  PubMed  CAS  Google Scholar 

  41. Kaye FJ, Kratzke RA, Gersten JL, Horowitz JM (1990) A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc Natl Acid Sci USA 87: 6922–6926

    Article  CAS  Google Scholar 

  42. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilm’s tumor locus. Cell 60: 509–520

    Article  PubMed  CAS  Google Scholar 

  43. Reeve AE, Sih SA, Raizis AM, Feinberg AP (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms tumour cells. Mol Cell Biol 9: 1799–1803

    PubMed  CAS  Google Scholar 

  44. Grundy P, Koufos A, Morgan K, Li FP, Meadows AT, Cavenee WK (1988) Familial predisposition to Wilm’s tumour does not map to the short arm of chromosome 11. Nature 336: 374–376

    Article  PubMed  CAS  Google Scholar 

  45. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NFI patients. Science 249: 181–186

    Article  PubMed  CAS  Google Scholar 

  46. Feuron ER, Cho Kr, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of chromosome 18q gene that is altered in colorectal cancers. Science 247: 49–56

    Article  Google Scholar 

  47. Kawasaki ES, Clark SS, Coyne NY, Smith SD, Champlin R, Witte ON, McCormick FP (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5698–5702

    Article  PubMed  CAS  Google Scholar 

  48. Arnoldus EPJ, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC, van der Ploeg M, Raap AK (1990) Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet 54: 108–111

    Article  PubMed  CAS  Google Scholar 

  49. van Denderen J, Hermans A, Meeuwsen T, Troelstra C, Zegers N, Boersma W, Grosveld G, van Ewijk W (1989) Antibody recognition of the tumor specific bcr-abl joining region in chronic myeloid leukemia. J Exp Med 169: 87–98

    Article  PubMed  Google Scholar 

  50. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. Ann Intern Med 103: 620–625

    PubMed  CAS  Google Scholar 

  51. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJR, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P, Sherr D, Solomon E, Spurr NK (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614–616

    Article  PubMed  CAS  Google Scholar 

  52. Viskochil D, Buchberg AM, Xu G, Cawthon RA, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA, White R, O’Connell P (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62: 187–192

    Article  PubMed  CAS  Google Scholar 

  53. Nigro JM, Baker SJ, Preisinger AC, Jessup JN, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devillee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708

    Article  PubMed  CAS  Google Scholar 

  54. Harnden DG, Klinger HP (eds) (1985) ISCN: an international system for human cytogenetic nomenclature Karger, Basel

    Google Scholar 

  55. Human Gene Mapping 10 (1989) 10th international workshop on human gene mapping. Cytogenet Cell Genet 51: 1–1148

    Article  Google Scholar 

  56. Erikson J, Finger L, San L, Ar-Rushdi A, Nishikura K, Minowada J, Finon J, Emanuel BS, Nowell PC, Croce CM (1985) Deregulation of c-myc by translocation of the a-locus of the T-cell receptor in T-cell leukemias. Science 232: 884–886

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagemeijer, A., Grosveld, G. (1992). Oncogenes and Chromosomal Aberrations. In: Voûte, P.A., Barrett, A., Lemerle, J. (eds) Cancer in Children. UICC International Union Against Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84722-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84722-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84724-0

  • Online ISBN: 978-3-642-84722-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics