Skip to main content

Generalization of BCS Superconductivity to Non-Phonon Mediated Interactions: The Excitonic Interaction

  • Conference paper
Physics of High-Temperature Superconductors

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 106))

Abstract

It has long been recognised that, in principle, superconductivity can be induced by mechanisms other than the phonon mechanism. This follows from a simple generalization of the BCS theory, or better the Eliashberg version of that theory, that makes it clear that certain electronic excitations can provide such an attractive interaction. Because of the much higher energies of such excitations, superconductivity at much higher temperatures than those of phonon-mediated superconductors, should be possible. This raises the question whether this mechanism might be responsible for the high-transition temperatures of the recently discovered cuprate superconductors. In considering this question, we discuss the similarities and differences between the phonon mechanism, and such a non-phonon, exciton mechanism, the effects of these upon the superconducting transition temperature, and their effects upon the nature and symmetry of the superconducting state. We discuss the characteristic signature of the non-phonon interaction and review the experimental evidence for and against a possible role such a non-phonon mechanism might play in the superconductivity of the cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. B. T. Matthias, Physics Today, April (1972), pl8–19

    Google Scholar 

  3. W. A. Little, Phys. Rev. 134, A1416 (1964)

    Article  ADS  Google Scholar 

  4. V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 47, 2318 (1964) [Sov. Phys. JETP 20, 1549 (1965)]

    Google Scholar 

  5. J. G. Bednorz and K. A. Müller, Z. Phys. B64,189 (1986)

    Article  ADS  Google Scholar 

  6. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58,908 (1987)

    Article  ADS  Google Scholar 

  7. W. A. Little, Novel Superconductivity. S.A. Wolf and V. Z. Kresin Eds.(Plenum Press, New York, 1987) p341–353.

    Chapter  Google Scholar 

  8. H. Gutfreund and W. A. Little, “Prospects of Excitonic Superconductivity” in Highly Conducting One Dimensional Solids, J. T. Devreese, R. P. Evrard and V. E. Doren, Eds (Plenum New York 1979) p305 – 372; See also V. L Ginzburg, Contemp. Phys. 9,355 (1968)

    Google Scholar 

  9. W. A. Little, Int. Jour. Quantum Chem. 15,545 (1981)

    Google Scholar 

  10. W. A. Little, Jour. de Physique, Colloque C3,44,819 (1983)

    Google Scholar 

  11. O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov, Rev. Mod. Phys. 53, 81–93 (1981)

    Article  ADS  Google Scholar 

  12. R. A. Ferrell, Phys. Rev. Lett. 13, 330–335 (1964)

    Article  ADS  Google Scholar 

  13. T. M. Rice, Phys. Rev. 140A, 1889–1891 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B7, 1020–1029 (1973)

    Article  ADS  Google Scholar 

  15. W. A. Little, Phys. Rev. 156,396 (1967)

    Article  ADS  Google Scholar 

  16. J. S. Langer and V. Ambegaokar, Phys. Rev. 164,498 (1967)

    Article  ADS  Google Scholar 

  17. F. Gamble, F. J. DiSalvo, R. A. Klemm and T. H. Geballe, Science 168,568 (1970)

    Article  ADS  Google Scholar 

  18. R. L. Greene, G. B. Street, and L. J. Suter, Phys. Rev. Lett. 34,577 (1975)

    Article  ADS  Google Scholar 

  19. A. B. Migdal, Sov. Phys. – JETP, 7,996 (1958)

    MathSciNet  Google Scholar 

  20. D. Davis, H. Gutfreund, and W. A. Little, Phys. Rev. 13, 4766 (1976)

    Article  ADS  Google Scholar 

  21. J. Cai, X. L. Lei, and L. M. Xie, Phys. Rev. B39, 11618–11623 (1989)

    Article  ADS  Google Scholar 

  22. W. A. Little, J. Polymer Sei. C29, 17 (1970)

    Google Scholar 

  23. V. Kresin, Phys Rev. B35, 8716 (1987)

    Article  ADS  Google Scholar 

  24. J. Ruvalds, Phys. Rev. B35, 8868 (1987)

    ADS  Google Scholar 

  25. N. L. Cohen and P. W. Anderson, in Superconductivity in d-and f-Band Metals, D. H. Douglass (Ed.) AIP, New York (1972).

    Google Scholar 

  26. J. C. Phillips, Phys. Rev. Lett. 29, 1551 (1972)

    Article  ADS  Google Scholar 

  27. V. L. Ginzburg, JETP Lett. 14,396 (1971); Sov. Phys. Usp. 13, 335-352 (1972)

    MathSciNet  ADS  Google Scholar 

  28. D. A. Kirzhnits, E. G. Maksimov, and D. I. Khomskii, J. Low Temp. Phys. 10, 79 (1973)

    Article  ADS  Google Scholar 

  29. J. P. Carbotte, Rev, Mod. Phys. 62, 1027–1157 (1990)

    Article  ADS  Google Scholar 

  30. G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973)

    Article  ADS  Google Scholar 

  31. V. Z. Kresin, H. Gutfreund, and W. A. Little, Solid State Comm. 51,339 (1984)

    Article  ADS  Google Scholar 

  32. P. W. Anderson, Editorial Comment, Physica 2,151 (1966)

    Google Scholar 

  33. J. Appel, Phys. Rev. Lett. 21, 1164 (1968)

    Article  ADS  Google Scholar 

  34. P. B. Allen, Solid State Comm. 12,379 (1973)

    Article  ADS  Google Scholar 

  35. A. E. Karakozov, E. G. Maksimov, and S. A. Mashkov, Sov. Phys.-JETP 41, 971–976 (1976)

    ADS  Google Scholar 

  36. W. A. Little, J. Low Temp. Phys. 13,365 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  37. V. Z. Kresin, Phys. Rev. B30,450 (1984)

    Article  ADS  Google Scholar 

  38. W. A. Little, Science 242, 1390–1395 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  39. W. A. Little, Czech. J. Phys. 40, 790–799 (1990)

    Article  MATH  ADS  Google Scholar 

  40. W. A. Little in Ceramic Superconductors (World Scientific Co. Pte, Ltd., Singapore) 1991, p. 79–91.

    Google Scholar 

  41. B. T. Geilikman and V. Z. Kresin, Phys. Lett. 40A,123 (1972)

    Article  ADS  Google Scholar 

  42. V. Z. Kresin and V. P. Parkhomenko, Soviet Physics. Solid State 16, 2180 (1975)

    Google Scholar 

  43. F. Marsiglio and J. P. Carbotte, Phys. Rev. B33, 6141 (1986)

    Article  ADS  Google Scholar 

  44. G. M. Eliashberg, Soviet Phys. JETP 7,696 (1960); see also D. J. Scalapino, in Superconductivity, Volume 1, Ed. R. D. Parks, Marcell Dekker, Inc., New York (1969), p 473.

    Google Scholar 

  45. V. L. Pokrovskii and M. S. Ryvkin, Soviet Phys. JETP 16, 67–75 (1963)

    ADS  Google Scholar 

  46. Z. Schlesinger, R. T. Collins, F. Hotzberg, C. Field, N. E. Bickers & D. J. Scalapino, Nature 343, 242–243 (1990)

    Article  ADS  Google Scholar 

  47. A. Virosztek and J. Ruvalds, Phys Rev. B42, 4064 (1990)

    Article  ADS  Google Scholar 

  48. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)

    Article  ADS  Google Scholar 

  49. G. Gladstone, M. A. Jensen and J. R. Schricffer in Superconductivity, Volume 2, Ed. R. D. Parks, Marcell Dekker, Inc., New York (1969), p 767–771.

    Google Scholar 

  50. W. A. Little and J. P. Collman, Proc. Natl. Acad. Sei. U. S.A. 85,4596 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Little, W.A. (1992). Generalization of BCS Superconductivity to Non-Phonon Mediated Interactions: The Excitonic Interaction. In: Maekawa, S., Sato, M. (eds) Physics of High-Temperature Superconductors. Springer Series in Solid-State Sciences, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84718-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84718-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84720-2

  • Online ISBN: 978-3-642-84718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics