Generalization of BCS Superconductivity to Non-Phonon Mediated Interactions: The Excitonic Interaction

  • W. A. Little
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 106)


It has long been recognised that, in principle, superconductivity can be induced by mechanisms other than the phonon mechanism. This follows from a simple generalization of the BCS theory, or better the Eliashberg version of that theory, that makes it clear that certain electronic excitations can provide such an attractive interaction. Because of the much higher energies of such excitations, superconductivity at much higher temperatures than those of phonon-mediated superconductors, should be possible. This raises the question whether this mechanism might be responsible for the high-transition temperatures of the recently discovered cuprate superconductors. In considering this question, we discuss the similarities and differences between the phonon mechanism, and such a non-phonon, exciton mechanism, the effects of these upon the superconducting transition temperature, and their effects upon the nature and symmetry of the superconducting state. We discuss the characteristic signature of the non-phonon interaction and review the experimental evidence for and against a possible role such a non-phonon mechanism might play in the superconductivity of the cuprates.


Fermi Surface Isotope Effect Vertex Correction Limited Dimensionality Exciton Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)MathSciNetCrossRefMATHADSGoogle Scholar
  2. 2.
    B. T. Matthias, Physics Today, April (1972), pl8–19Google Scholar
  3. 3.
    W. A. Little, Phys. Rev. 134, A1416 (1964)CrossRefADSGoogle Scholar
  4. 4.
    V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 47, 2318 (1964) [Sov. Phys. JETP 20, 1549 (1965)]Google Scholar
  5. 5.
    J. G. Bednorz and K. A. Müller, Z. Phys. B64,189 (1986)CrossRefADSGoogle Scholar
  6. 6.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58,908 (1987)CrossRefADSGoogle Scholar
  7. 7.
    W. A. Little, Novel Superconductivity. S.A. Wolf and V. Z. Kresin Eds.(Plenum Press, New York, 1987) p341–353.CrossRefGoogle Scholar
  8. 8.
    H. Gutfreund and W. A. Little, “Prospects of Excitonic Superconductivity” in Highly Conducting One Dimensional Solids, J. T. Devreese, R. P. Evrard and V. E. Doren, Eds (Plenum New York 1979) p305 – 372; See also V. L Ginzburg, Contemp. Phys. 9,355 (1968)Google Scholar
  9. 9.
    W. A. Little, Int. Jour. Quantum Chem. 15,545 (1981)Google Scholar
  10. 10.
    W. A. Little, Jour. de Physique, Colloque C3,44,819 (1983)Google Scholar
  11. 11.
    O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov, Rev. Mod. Phys. 53, 81–93 (1981)CrossRefADSGoogle Scholar
  12. 12.
    R. A. Ferrell, Phys. Rev. Lett. 13, 330–335 (1964)CrossRefADSGoogle Scholar
  13. 13.
    T. M. Rice, Phys. Rev. 140A, 1889–1891 (1965)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B7, 1020–1029 (1973)CrossRefADSGoogle Scholar
  15. 15.
    W. A. Little, Phys. Rev. 156,396 (1967)CrossRefADSGoogle Scholar
  16. 16.
    J. S. Langer and V. Ambegaokar, Phys. Rev. 164,498 (1967)CrossRefADSGoogle Scholar
  17. 17.
    F. Gamble, F. J. DiSalvo, R. A. Klemm and T. H. Geballe, Science 168,568 (1970)CrossRefADSGoogle Scholar
  18. 18.
    R. L. Greene, G. B. Street, and L. J. Suter, Phys. Rev. Lett. 34,577 (1975)CrossRefADSGoogle Scholar
  19. 19.
    A. B. Migdal, Sov. Phys. – JETP, 7,996 (1958)MathSciNetGoogle Scholar
  20. 20.
    D. Davis, H. Gutfreund, and W. A. Little, Phys. Rev. 13, 4766 (1976)CrossRefADSGoogle Scholar
  21. 21.
    J. Cai, X. L. Lei, and L. M. Xie, Phys. Rev. B39, 11618–11623 (1989)CrossRefADSGoogle Scholar
  22. 22.
    W. A. Little, J. Polymer Sei. C29, 17 (1970)Google Scholar
  23. 23.
    V. Kresin, Phys Rev. B35, 8716 (1987)CrossRefADSGoogle Scholar
  24. 24.
    J. Ruvalds, Phys. Rev. B35, 8868 (1987)ADSGoogle Scholar
  25. 25.
    N. L. Cohen and P. W. Anderson, in Superconductivity in d-and f-Band Metals, D. H. Douglass (Ed.) AIP, New York (1972).Google Scholar
  26. 26.
    J. C. Phillips, Phys. Rev. Lett. 29, 1551 (1972)CrossRefADSGoogle Scholar
  27. 27.
    V. L. Ginzburg, JETP Lett. 14,396 (1971); Sov. Phys. Usp. 13, 335-352 (1972)MathSciNetADSGoogle Scholar
  28. 28.
    D. A. Kirzhnits, E. G. Maksimov, and D. I. Khomskii, J. Low Temp. Phys. 10, 79 (1973)CrossRefADSGoogle Scholar
  29. 29.
    J. P. Carbotte, Rev, Mod. Phys. 62, 1027–1157 (1990)CrossRefADSGoogle Scholar
  30. 30.
    G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973)CrossRefADSGoogle Scholar
  31. 31.
    V. Z. Kresin, H. Gutfreund, and W. A. Little, Solid State Comm. 51,339 (1984)CrossRefADSGoogle Scholar
  32. 32.
    P. W. Anderson, Editorial Comment, Physica 2,151 (1966)Google Scholar
  33. 33.
    J. Appel, Phys. Rev. Lett. 21, 1164 (1968)CrossRefADSGoogle Scholar
  34. 34.
    P. B. Allen, Solid State Comm. 12,379 (1973)CrossRefADSGoogle Scholar
  35. 35.
    A. E. Karakozov, E. G. Maksimov, and S. A. Mashkov, Sov. Phys.-JETP 41, 971–976 (1976)ADSGoogle Scholar
  36. 36.
    W. A. Little, J. Low Temp. Phys. 13,365 (1973)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    V. Z. Kresin, Phys. Rev. B30,450 (1984)CrossRefADSGoogle Scholar
  38. 38.
    W. A. Little, Science 242, 1390–1395 (1988)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    W. A. Little, Czech. J. Phys. 40, 790–799 (1990)CrossRefMATHADSGoogle Scholar
  40. 40.
    W. A. Little in Ceramic Superconductors (World Scientific Co. Pte, Ltd., Singapore) 1991, p. 79–91.Google Scholar
  41. 41.
    B. T. Geilikman and V. Z. Kresin, Phys. Lett. 40A,123 (1972)CrossRefADSGoogle Scholar
  42. 42.
    V. Z. Kresin and V. P. Parkhomenko, Soviet Physics. Solid State 16, 2180 (1975)Google Scholar
  43. 43.
    F. Marsiglio and J. P. Carbotte, Phys. Rev. B33, 6141 (1986)CrossRefADSGoogle Scholar
  44. 44.
    G. M. Eliashberg, Soviet Phys. JETP 7,696 (1960); see also D. J. Scalapino, in Superconductivity, Volume 1, Ed. R. D. Parks, Marcell Dekker, Inc., New York (1969), p 473.Google Scholar
  45. 45.
    V. L. Pokrovskii and M. S. Ryvkin, Soviet Phys. JETP 16, 67–75 (1963)ADSGoogle Scholar
  46. 46.
    Z. Schlesinger, R. T. Collins, F. Hotzberg, C. Field, N. E. Bickers & D. J. Scalapino, Nature 343, 242–243 (1990)CrossRefADSGoogle Scholar
  47. 47.
    A. Virosztek and J. Ruvalds, Phys Rev. B42, 4064 (1990)CrossRefADSGoogle Scholar
  48. 48.
    C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)CrossRefADSGoogle Scholar
  49. 49.
    G. Gladstone, M. A. Jensen and J. R. Schricffer in Superconductivity, Volume 2, Ed. R. D. Parks, Marcell Dekker, Inc., New York (1969), p 767–771.Google Scholar
  50. 50.
    W. A. Little and J. P. Collman, Proc. Natl. Acad. Sei. U. S.A. 85,4596 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • W. A. Little
    • 1
  1. 1.Physics DepartmentStanford UniversityStanfordUSA

Personalised recommendations