Skip to main content

Wärmeübertragung durch Strahlung, Leitung und/oder Konvektion

  • Chapter
Wärmeübertragung durch Strahlung

Part of the book series: Wärme- und Stoffübertragung ((WÄRME))

  • 226 Accesses

Zusammenfassung

Wenn Wärmeleitung und/oder Konvektion zusammen mit Strahlung in einem absorbierenden und emittierenden Medium auftreten, werden die bereits für den Fall reiner Strahlung angesprochenen mathematischen Probleme komplizierter. Wenn nicht gezeigt werden kann, daß sowohl Leitung als auch Konvektion vernachlässigbar im Vergleich zur Strahlung sind oder umgekehrt, erhält man eine nichtlineare Integrodifferentialgleichung für die Transportgleichung für den allgemeinen Fall. Die Formulierung kann für einige Fälle, bei denen alle Übertragungsmechanismen miterfaßt werden müssen, vereinfacht werden. Ist zum Beispiel das Gas optisch dick, dann darf die Diffusionsnäherung angewendet werden. Die Strahlungsintegrale werden durch Differentialausdrücke ersetzt, und man erhält eine nichtlineare Differentialgleichung. Andere Näherungen, wie die Näherungen für transparente Gase oder optisch dünne Gase (Abschnitt 3.3.1) lassen sich unter geeigneten Bedingungen zur Vereinfachung der Strahlungsterme anwenden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Kellett, B.S.: Transmission of radiation through glass in tank furnaces. J. Soc. Glass Tech. 36(1952) 115–123

    Google Scholar 

  2. Gardon, R.: The emissivity of transparent materials. J. Am. Ceram. Soc. 39 (1956) 278–287

    Article  Google Scholar 

  3. Condon, E.U.: Radiative transport in hot glass. J. Quant. Spectrosc. Radiat. Transfer 8 (1968) 369–385

    Google Scholar 

  4. Eryou, N. D.; Glicksman, L. R.: An experimental and analytical study of radiative and conductive heat transfer in molten glass. J. Heat Transfer 94 (1972) 224–230

    Article  Google Scholar 

  5. Anderson, E. E.; Viskanta, R.; Stevenson, W. H.: Heat transfer through semitransparent solids. J. Heat Transfer 95 (1973) 179–186

    Article  Google Scholar 

  6. Kuriyama, M. et al.: The effect of radiation heat transfer in the measurement of thermal conductivity for the semitransparent medium. Bull. JSME 19 (1976) 973–979

    Article  Google Scholar 

  7. Wendlandt, B. C. H.: Temperature in an irradiated thermally conducting medium. J. Phys. D 6 (1973) 657–660

    Article  Google Scholar 

  8. Kadanoff, L.P.: Radiative transport within an ablating body. J. Heat Transfer 83 (1961) 215–225

    Google Scholar 

  9. Nelson, H. F.: Radiative transfer through carbon ablation layers. J. Quant. Spectrosc. Radiat. Transfer 13 (1973) 427–445

    Article  Google Scholar 

  10. Boles, M.A.; Özisik, M.N.: Simultaneous ablation and radiation in an absorbing, emitting and isotropically scattering medium. J. Quant. Spectrosc. Radiat. Transfer 12 (1972) 838–847

    Article  Google Scholar 

  11. Merriam, R.L.; Viskanta, R.: Radiative characteristics of cryodeposits for room temperature black body radiation. Cryogenic Eng. Conf., Case-Western Reserve University, Cleveland, August 1968

    Google Scholar 

  12. McConnell, D. G.: Radiant energy transport within cryogenic condensates. Inst. Environmental Sci. Annual Meeting Equipment Exposition, San Diego, Calif., April 11-13, 1966

    Google Scholar 

  13. Gilpin, R.R.; Roberton, R.B.; Singh, B.: Radiative heating in ice. J. Heat Transfer 99 (1977) 227–232

    Article  Google Scholar 

  14. Viskanta, R.; Grosh, R. J.: Heat transfer by simultaneous conduction and radiation in an absorbing medium. J. Heat Transfer 84 (1962) 63–72

    Google Scholar 

  15. Viskanta, R.; Grosh, R. J.: Effect of surface emissivity on heat transfer by simultaneous conduction and radiation. Int. J. Heat Mass Transfer 5 (1962) 729–734

    Article  Google Scholar 

  16. Viskanta, R.; Merriam, R.L.: Heat transfer by combined conduction and radiation between concentric spheres separated by radiating medium. J. Heat Transfer 90 (1968) 248–256

    Google Scholar 

  17. Greif, R.; Clapper, G.P.: Radiant heat transfer between concentric cylinders. Appl. Sci. Res., Sect. A, 15 (1966) 469–474

    Article  Google Scholar 

  18. Men, A.A.: Radiative-conductive heat transfer in a medium with a cylindrical geometry, I. Inz. Fiz. Zh. 24 (1973) 984–991

    Google Scholar 

  19. Timmons, D.H.; Mingle, J.O.: Simultaneous radiation and conduction with specular reflection. AIAA paper 68-28, January 1968

    Google Scholar 

  20. Schimmel, W.P.; Novotny, J.L.; Olsofka, F.A.: Interferometric study of radiation-conduction interaction. Fourth Int. Heat Transfer Conf., Paris, September 1970

    Google Scholar 

  21. Einstein, T. H.: Radiant heat transfer to absorbing gases enclosed between parallel flat plates with flow and conduction. NASA TR R-154, 1963

    Google Scholar 

  22. Cess, R. D.: The interaction of thermal radiation with conduction and convection heat transfer. In: Irvine Jr., T.R; Hartnett, J.P. (eds.): Adv. Heat Transfer 1 (1964) 1–50

    Google Scholar 

  23. Howell, J. R.: Determination of combined conduction and radiation of heat through absorbing media by the exchange factor approximation. Chem. Eng. Progr. Symp. Ser. 61 (1965) no. 59, pp. 162–171

    Google Scholar 

  24. Nelson, D. A.: On the uncoupled superposition approximation for combined conduction-radiation through infrared radiating gases. Int. J. Heat Mass Transfer 18 (1975) 711–713

    Article  Google Scholar 

  25. Goldstein, M. E.; Howell, J. R.: Boundary conditions for the diffusion solution of coupled conduction-radiation problems. NASA TN D-4618, 1968

    Google Scholar 

  26. Howell, J.R.; Goldstein, M.E.: Effective slip coefficients for coupled conduction-radiation problems. J. Heat Transfer 91 (1969) 165–166

    Article  Google Scholar 

  27. Taitel, Y.; Hartnett, J. P.: Application of Rosseland approximation and solution based on series expansion of the emission power to radiation problems. AIAA J. 6 (1968) 80–89

    Article  Google Scholar 

  28. Wang, L. S.; Tien, C. L.: A study of various limits in radiation heat-transfer problems. Int. J. Heat Mass Transfer 10 (1967) 1327–1338

    Article  Google Scholar 

  29. Fulkerson, G. D.; Bannerot, R. B.: An approximation for combined heat transfer in a radiati-vely absorbing and emitting gas. AIAA paper 73-750, July 16, 1973

    Google Scholar 

  30. Viskanta, R.: Radiation transfer and interaction of convention with radiation heat transfer. In: Irvine Jr., T.R; Hartnett, J.P. (eds.): Adv. Heat Transfer 3 (1966) 175–251

    Google Scholar 

  31. Pai, S.-L: Radiation gas dynamics. Berlin, Heidelberg, New York: Springer 1966

    MATH  Google Scholar 

  32. BondJr., J.W.; Watson, K.M.; Welch Jr., J.A.: Atomic theory of gas dynamics. Chaps. 10-13. Reading, Mass.: Addison-Wesley Publishing Company 1965

    Google Scholar 

  33. Zel’dovich, Y.B.; Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena, vol. I, chapt. 2. New York: Academic Press 1966

    Google Scholar 

  34. Vincenti, W.G.; Kruger Jr., C.H.: Introduction to physical gas dynamics. Chaps. 11-12. New York: Wiley 1965

    Google Scholar 

  35. Novotny, J. L.; Yang, K.-T.: The interaction of thermal radiation in optically thick boundary layers. J. Heat Transfer 89 (1967) 309–312

    Google Scholar 

  36. Viskanta, R.; Grosh, R. J.: Boundary layer in thermal radiation absorbing and emitting media. Int. J. Heat Mass Transfer 5 (1962) 795–806

    Article  Google Scholar 

  37. Cess, R. D.: Radiation effects upon boundary-layer flow of an absorbing gas. J. Heat Transfer 86 (1964) 469–475

    Google Scholar 

  38. Fritsch, C.A.; Grosh, R.J.; Wildin, M.W.: Radiative heat transfer through an absorbing boundary layer. J. Heat Transfer 88 (1966) 296–304

    Google Scholar 

  39. Kubo, S.: Stagnation point flow of a radiating gas of a large optical thickness II. Trans. Jpn. Soc. Aeronaut. Space Sci. 18 (1975) no. 41, 141–151

    Google Scholar 

  40. Howe, J. T.: Radiation shielding of the stagnation region by transpiration of an opaque gas. NASA TN D-329, 1960

    Google Scholar 

  41. Hasegawa, S.R.E.; Fukuda, K.: Analytical and experimental studies on simultaneous radiative and free convective heat transfer along a vertical plate. Proc. Jpn. Soc. Mech. Eng. 38 (1972) no. 315, 2873–2882; 39 (1973) no. 317, 250-257

    Google Scholar 

  42. Doura, S.; Howell, J. R.: An approximate solution for the energy equation with radiant participating media. ASME paper 77-HT-70, August 1977

    Google Scholar 

  43. Novotny, J. L.; Kelleher, M. D.: Free-convection stagnation flow of an absorbing-emitting gas. Int. J. Heat Mass Transfer 10 (1967) 1171–1178

    Article  Google Scholar 

  44. Cess, R. D.: The interaction of thermal radiation with free convection heat transfer. Int. J. Heat Mass Transfer 9 (1966) 1269–1277

    Article  MATH  Google Scholar 

  45. Arpaci, V. S.; Gőzűm, D.: Thermal stability of radiating fluids: The Benard problem. Phys. Fluids 16(1973)581–588

    Article  Google Scholar 

  46. Arpaci, V. S.; Bayazitoglu, Y.: Thermal stability of radiating fluids: Asymmetric slot problem. Phys. Fluids 16 (1973) 589–593

    Article  Google Scholar 

  47. Gille, X; Goody, R.: Convection in a radiating gas. J. Fluid Mech. 20 (1964) pt. 1, 47–49

    Article  MATH  Google Scholar 

  48. Cess, R.D.: The interaction of thermal radiation in boundary layer heat transfer. Third Int. Heat Transfer Conf. AIChE J. 5 (1966) 154–163

    Google Scholar 

  49. Schlichting, H.: Grenzschicht-Theorie, 5. Aufl. Karlsruhe: Braun 1965, S. 169–171

    MATH  Google Scholar 

  50. Viskanta, R.: Interaction of heat transfer by conduction, convection, and radiation in a radiating fluid. J. Heat Transfer 85 (1963) 318–328

    Google Scholar 

  51. Einstein, T. H.: Radiant heat transfer to absorbing gases enclosed in a circular pipe with conduction, gas flow, and internal heat generation. NASA TR R-156, 1963

    Google Scholar 

  52. Adrianov, V. N.; Shorin, S. N.: Radiative transfer in the flow of a radiating medium. Trans. TT-1, Purdue University, February 1961

    Google Scholar 

  53. Chen, J. C: Simultaneous radiative and convective heat transfer in an absorbing, emitting, and scattering medium in slug flow between parallel plates. Report BNL-6876-R, Brookhaven National Laboratory, March 18, 1963

    Google Scholar 

  54. Edwards, D. K.; Balakrishnan, A.: Self-absorption of radiation in turbulent molecular gases. Combust. Flame 20 (1973) 401–417

    Article  Google Scholar 

  55. Chiba, Z.; Greif, R.: Heat transfer to steam flowing turbulently in a pipe. Int. J. Heat Mass Transfer 16 (1973) 1645–1648

    Article  Google Scholar 

  56. Nakra, N.K.; Smith, T.F.: Combined radiation-convection for a real gas. ASME paper 76-HT-58, August 1976

    Google Scholar 

  57. Bergquam, J.B.; Wang, N.S.: Heat transfer by convection and radiation in an absorbing, scattering medium flowing between parallel plates. ASME paper 76-HT-50, August 1976

    Google Scholar 

  58. Greif, R.; Willis, D. R.: Heat transfer between parallel plates in cluding radiation and rarefaction effects. Int. J. Heat Mass Transfer 10 (1967) 1041–1048

    Article  Google Scholar 

  59. Martin, J. K.; Hwang, C. C: Combined radiant and convective heat transfer to laminar steam flow between gray parallel plates with uniform heat flux. J. Quant. Spectrosc. Radiat. Transfer 15 (1975) 1071–1081

    Article  Google Scholar 

  60. De Soto, S.; Edwards, D. K.: Radiative emission and absorption in non-isothermal nongray gases in tubes. In: Charwat, A.F. (eds.): Proc. 1965 Heat Transfer Fluid Mech. Inst. 1965, 358–372

    Google Scholar 

  61. Pearce, B. L.; Emery, A. F.: Heat transfer by thermal radiation and laminar forced convection to an absorbing fluid in the entry region of a pipe. J. Heat Transfer 92 (1970) 221–230

    Article  Google Scholar 

  62. Jeng, D. R.; Lee, E. J., DeWitt, K. J.: Simultaneous conductive and radiative heat transfer for laminar flow in circular tubes with constant wall temperature. Proc. 5th Int. Heat Transfer Conf. Tokyo, vol. I (1974) 118–122

    Google Scholar 

  63. Jeng, D. R.; Lee, E. X; DeWitt, K. J.: A study of two limiting cases in convective and radiative heat transfer with nongray gases. Int. J. Heat Mass Transfer 19 (1976) 589–596

    Article  Google Scholar 

  64. Landram, C. S.; Greif, R.; Habib, I. S.: Heat transfer in turbulent pipe flow with optically thin radiation. J. Heat Transfer 91 (1969) 330–336

    Google Scholar 

  65. Wassel, A.T.; Edwards, D.K.: Molecular gas band radiation in cylinders. J. Heat Transfer 96 (1974) 21–26

    Article  Google Scholar 

  66. Wassel, A. T.; Edwards, D. K.: Molecular gas radiation in an laminar or turbulent pipe flow. J. Heat Transfer 98 (1976) 101–107

    Article  Google Scholar 

  67. Greif, R.: Laminar convection with radiation: Experimental and theoretical results. Int. J. Heat Mass Transfer 21 (1978) 447–480

    Article  Google Scholar 

  68. Balakrishnan, A.; Edwards, D. K.: Molecular gas radiation in the thermal entrance region of a duct. J. Heat Transfer 101 (1979) 489–495

    Article  Google Scholar 

  69. De Soto, S.: The radiation from an axisymmetric, real gas system with a non-isothermal temperature distribution. Chem. Eng. Progr. Symp. Ser. 61 (1965) 138–154

    Google Scholar 

  70. Penner, S.S.; Olfe, D.B.: Radiation and reentry. New York: Academic Press 1968

    Google Scholar 

  71. Viskanta, R.; Merriam, R. L.: Shielding of surfaces in couette flow against radiation by transpiration of an absorbing-emitting gas. Int. J. Heat Mass Transfer 10 (1967) 641–653

    Article  Google Scholar 

  72. Viskanta, R.; Bathla, P. S.: Unsteady energy transfer in a layer of gray gas by thermal radiation. Z. Angew. Math. Phys. 18 (1967) 353–367

    Article  Google Scholar 

  73. Viskanta, R.; Lall, P. S.: Transient cooling of a spherical mass of high-temperature gas by thermal radiation. J. Appl. Mech. 32 (1965) 740–746

    Article  Google Scholar 

  74. Viskanta, R.; Lall, P. S.: Transient heating and cooling of a sperical mass of gray gas by thermal radiation. In: Saad, M.A.; Miller, J.A. (eds.): Proc. Heat Transfer Fluid Mech. Inst. 1966, 181–197

    Google Scholar 

  75. Chang, Y.-P.; Smith Jr., R. S.: Steady and transient heat transfer by radiation and conduction in an medium bounded by two coaxial cylindrical surfaces. Int. J. Heat Mass Transfer 13 (1970) 69–80

    Article  Google Scholar 

  76. Viskanta, R.; Anderson, E.E.: Heat transfer in semitransparent solids. In: Irvine Jr., T.F.; Hartnett, J.P. (eds.): Adv. Heat Transfer 11 (1975) 317–441

    Google Scholar 

  77. Carslaw, H. S.; Jaeger, J. C: Conduction of heat in solids, 2nd ed. Oxford: Clarendon Press 1959, p. 80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegel, R., Howell, J.R., Lohrengel, J. (1993). Wärmeübertragung durch Strahlung, Leitung und/oder Konvektion. In: Wärmeübertragung durch Strahlung. Wärme- und Stoffübertragung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84711-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84711-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55082-2

  • Online ISBN: 978-3-642-84711-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics