Skip to main content

Pathophysiologie der Gefäßwand — Bedeutung für internistische Erkrankungen

  • Conference paper
Verhandlungen der Deutschen Gesellschaft für Innere Medizin

Zusammenfassung

Das gesamte Gefäßsystem wird vom Endothel in einer einzelligen Schicht ausgekleidet. Dabei stellt das Endothel nicht nur eine Diffusionsbarriere dar, sondern leistet einen wesentlichen Beitrag bei der Regulation des Gefäßtonus. Diese den Gefäßtonus modulierende Funktion des Endothels wurde 1981 von Furchgott et al. aufgedeckt, als sie zeigen konnten, daß Azetylcholin (ACh) in Gefäßen mit intaktem Endothel eine Dilatation hervorruft, in In-vitro-Gefäßpräparaten, deren Endothel infolge der Präparation meistens weitgehend geschädigt ist, aber eine Konstriktion auslöst. So hängt die Wirkung einer Vielzahl von im Blut zirkulierenden, vasoaktiven Substanzen (sog. Agonisten) auf die Vasomotorik vom funktionellen Zustand des Endothels ab:

  1. a)

    Ist die Endothelfunktion intakt, so kommen diese Agonisten nicht unmittelbar mit der glatten GefäßmuskuIatur in Kontakt, sondern stimulieren zunächst einmal, meist über einen rezeptorgekoppelten Mechanismus, das Endothel, wodurch es zur nachfolgenden Freisetzung von verschiedenen Lokalhormonen (sog. Autakoiden) kommt Diese Autakoide, wie der „endothelium-derived relaxant factor“ (EDRF; wahrscheinlich mit dem Stickoxid-(NO-)Radikal identisch) und verschiedene Prostaglandine (z. B. Prostazyklin, PGI2) bewirken bei abluminal gerichteter Freisetzung Vasodilatation und bei luminal gerichteter Freisetzung in erster Linie eine Hemmung der Thrombozytenadhäsion und -aggregation.

  2. b)

    Ist die Endothelfunktion dagegen mangelhaft (z. B. bei Atheromatose, bei der Hypertonie und bei immunologischen Reaktionen an der Endotheloberfläche) oder bei mechanischer Zerstörung des Endothels (z. B. durch Ballonkathetermanipulationen oder scherkraftbedingt bei stark turbulentem Fluß im Gebiet der Stenosen), dann fällt zum einen die Autakoidfreisetzung durch das Endothel weitgehend aus, zum anderen treffen die im Blut zirkulierenden Agonisten teilweise direkt auf die Gefäßmuskulatur, da die Schutzfunktion des Endothels nicht mehr gegeben ist. Über die Stimulation spezifischer Rezeptoren an der Gefäßmuskulatur (H1-, HT2-, P2x-, M1,2-, α1,2-, AVP-, VP-, u. a.) lösen die meisten dieser Agonisten dann eine Konstriktion aus. In den letzten Jahren sind eine Reihe von Erkrankungen, die möglicherweise auf eine gestörte Endothelfunktion zurückzuführen sind, daraufhin genauer untersucht worden. Bei verschiedenen Krankheitsbildern mit gestörter Vasomotorik, wie z. B. beim Morbus Raynaud und bei verschiedenen Formen der Angina pectoris (Übersicht bei Bassenge u. Heusch 1990), konnte die ursächliche Beteiligung einer mangelhaften endothelialen Autakoidfreisetzung mit weitgehender Sicherheit festgestellt werden. Da es sich bei diesen Erkrankungen jedoch meistens um ein multifaktorielles Geschehen handelt, dessen Teilkomponenten sehr variabel sind, und in dem nervöse, präsynaptische, humorale, hormonale, metabolische und endothelvermittelte Faktoren und Mechanismen interagieren, läßt sich die Stärke der einzelnen Teilkomponenten noch nicht genau abschätzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bassenge E (1989) Flow-dependent regulation of coronary vasomotor tone. Eur Heart J 10 (Suppl. F): 22–27

    Article  PubMed  CAS  Google Scholar 

  2. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116: 77–165

    PubMed  CAS  Google Scholar 

  3. Bassenge E, Münzel T (1988) Consideration of conduit and resistance vessels in regulation of blood flow. Am J Cardiol 62: 40E - 44E

    Article  PubMed  CAS  Google Scholar 

  4. Bassenge E, Stewart DJ (1988) Interdependence of pharmacologically-induced and endothelium-mediated coronary vasodilation in antianginal therapy. Cardiovasc Drugs 2: 27–34

    Article  CAS  Google Scholar 

  5. Bassenge E, Busse R, Pohl U (1989) Hemmung der Thrombozytenaggregation und -adhäsion durch EDRF and deren pathophysiologische Bedeutung (Inhibition of platelet-aggregation and -adhesion by EDRF: pathophysiological significance). Z Kardiol 78 (Suppl 6): 54–58

    PubMed  CAS  Google Scholar 

  6. Busse R, Lückhoff A, Bassenge E (1987) Endothelium-derived relaxent factor inhibits platelet activation. Naunyn-Schmiedebergs Arch Pharmacol 336: 566–571

    PubMed  CAS  Google Scholar 

  7. Busse R, Pohl U, Mülsch A, Bassenge E (1989) Modulation of the vascodilator action of SIN-1 by the endothelium. J Cardiovasc Pharmacol 14: 81–85

    Google Scholar 

  8. Freimann PC, Mithcell GG, Heistad DD, Amstron ML, Harrison DG (1986) Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Cir Res 58: 783–789

    Article  Google Scholar 

  9. Furchgott RF, Zawadzki JV, Cherry PD (1981) Role of endothelium in the vasodilator response to acetylcholine. In: Vanhoutte PM, Leusen I (eds) Vasodilation. Raven Press, New York, pp 49–66

    Google Scholar 

  10. Galle J, Bassenge E. Einfluß der low density Lipoproteine auf die Vasomotorik. Z Kardiol 1991 (in press)

    Google Scholar 

  11. Harrison DG, Armstrong ML, Freiman PC, Heistad DD (1987) Restoration of endothelium-dependent relaxation by treatment of atherosclerosis. J Clin Invest 80: 1808–1811

    Article  PubMed  CAS  Google Scholar 

  12. Heistad DD, Mark AL, Marcus ML, Piegors DJ, Armstong ML (1987) Dietary treatment of atherosclerosis abolishes hyperresponsiveness to serotonin: implications for vasospasm. Circ Res 61: 346–351

    Article  PubMed  CAS  Google Scholar 

  13. Lamping KG, Dole WP (1987) Acute hypertension selectively potentiates constrictor responses of large coronary arteries to serotonin by altering endothelial function in vivo. Circ Res 61: 904–913

    Article  PubMed  CAS  Google Scholar 

  14. Linder L, Kiowski W, Buhler FR, Luscher TF (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo blunted response in essential hypertension. Circulation 81: 1762–1767

    Article  PubMed  CAS  Google Scholar 

  15. Löscher T, Raij L, Vanhoutte PM (1987a) Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 9: 157–163

    Article  Google Scholar 

  16. Löscher T, Vanhoutte PM, Raij L (1987b) Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 9 (Suppl. III):III193–11I197

    Google Scholar 

  17. Rafflenbeul W, Bassenge E, Lichtlen P (1989) Konkurrenz zwischen endothelabhängiger and Nitroglycerin-induzierter koronarer Vasodilatation. Z Kardiol 78 (Suppl 2): 45–47

    PubMed  Google Scholar 

  18. Stewart DJ, Pohl U, Bassenge E (1988) Free radicals inhibit endothelium-dependent dilation in the coronary resistence bed. Am J Physiol 255: H765 - H769

    PubMed  CAS  Google Scholar 

  19. Vekshtein VI, Yeung AC, Vita JA, Nabel EG, Fish RD, Bittl JA, Selwyn AP, Ganz P (1989) Fish oil improves endothelium-dependent relaxation in patients with coronary artery disease. Circulation (abstract); 80 (Suppl. II): II - 434

    Google Scholar 

  20. Verbeuern TJ, Jordeans FH, Zonnekeyn LL, Van Hove CE, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58: 552–564

    Google Scholar 

  21. Benninghoff A, Goerttler K (1975) Die Wandstruktur der Blutgefäße. In: Ferner H, Staubesand J (Hrsg) Lehrbuch der Anatomie des Menschen, 10. Auflage. Urban Schwarzenberg, München Berlin Wien, pp 419

    Google Scholar 

  22. Betz E, Schlote W (1979) Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74: 10–20

    Article  PubMed  CAS  Google Scholar 

  23. Bürk RR (1973) A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci USA 70: 369–372

    Article  PubMed  Google Scholar 

  24. Dartsch PC (1987) Kultivierung von Gefäßwandzellen. Mikrokosm 76: 198–206

    Google Scholar 

  25. Dartsch PC (1987) Das Zellskelett kultivierter Gefäßwandzellen. Mikrokosm 76: 33–39

    Google Scholar 

  26. Dartsch PC (1990) Darstellung von Zytoskelett-und Zelloberflächenproteinen in kultivierten Gefäßwandzellen und Gewebeschnitten durch indirekte Immunfluoreszenz. Labormed 12: 565–577

    Google Scholar 

  27. Dartsch PC (1990) Einbettungsmedien für die Auflichtfluoreszenz-Mikroskopie. Eine vergleichende Untersuchung an Strukturen des Zytoskeletts kultivierter Epithelzellen aus der Linsenkapsel des Rinderauges. Labormed 13: 450–456

    Google Scholar 

  28. Dartsch PC (1990) Time-lapse video microscopy. Micr Anal 15: 31

    Google Scholar 

  29. Dartsch PC (1990) Photodynamische Therapie vaskulärer Stenosen? Veränderungen in kultivierten Plaquezellen des Menschen während der photodynamischen Reaktion in vitro. Phlebol Prokt 19: 164–170

    Google Scholar 

  30. Dartsch PC, Bauriedel G, Höfling B, Betz E (1989) Cell culture of human atheromatous plaque material. In: Höfling B, v Pölnitz A (eds) Interventional cardiology and angiology. Steinkopff, Darmstadt, p 115

    Chapter  Google Scholar 

  31. Dartsch PC, Betz E (1989) Response of endothelial cells to mechanical stimulation. Basic Res Cardiol 84: 268–281

    Article  PubMed  CAS  Google Scholar 

  32. Dartsch PC, Betz E (1989) Wirkung von homologen und heterologen Seren auf die Kultur von Gefäßwandzellen des Menschen. In: Hoffineister H-E, Betz E, Kling D (Hrsg) Die Bedeutung von Zeltkulturen für die Erforschung der Arteriosklerose. Attempto, Tübingen, p 33

    Google Scholar 

  33. Dartsch PC, Betz E, Ischinger T (1991) Wirkung von Dihämatoporphyrin-Derivaten auf kultivierte glatte Muskelzellen des Menschen aus normalen und atherosklerotisch veränderten Gefäßsegmenten Übersicht über bisherige Ergebnisse und Implikationen für eine photodynamische Therapie. Z Kardiol (im Druck)

    Google Scholar 

  34. Dartsch PC, Ischinger T, Betz E (1990) Responses of cultured smooth muscle cells from human non-atherosclerotic arteries and primary stenosing lesions following photoradiation: implications for photodynamic therapy of vascular stenoses. J Am Coll Cardiol 15: 1545–1550

    Article  PubMed  CAS  Google Scholar 

  35. Dartsch PC, Ischinger T, Betz E (1990) Differential effect of photofrin II on growth of human smooth muscle cells from nonatherosclerotic arteries and atheromatous plaques in vitro. Arteriosclerosis 10: 616–624

    Article  PubMed  CAS  Google Scholar 

  36. Dartsch PC, Ischinger T, Coppenrath K, Betz E (189) Effect of photofrin II on growth of cultured human smooth muscle cells from non-atherosclerotic arteries and atheromatous plaques: implications for photodynamic laser therapy of vascular stenoses? Eur Heart J 10 (Suppl):151

    Google Scholar 

  37. Dartsch PC, Roth D, Betz E (1988) Gefäßwandzellen des Menschen in Kultur. VASA Suppl 23: 18–22

    PubMed  CAS  Google Scholar 

  38. Dartsch PC, Roth D, Betz E (1989) Isolierung, Identifizierung und Kultivierung von Gefäßwandzellen des Menschen. In: Betz E (Hrsg) Die Anwendung aktueller Methoden in der Arteriosklerose-Forschung. Kohlhammer, Stuttgart, p 29

    Google Scholar 

  39. Dartsch PC, Voisard R, Bauriedel G, Höfling B, Betz E (1990) Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions. Arteriosclerosis 10: 62–75

    Article  PubMed  CAS  Google Scholar 

  40. Dartsch PC, Voisard R, Betz E (1990) In vitro growth characteristics of human atherosclerotic plaque cells: comparison of cells from primary stenosing and restenosing lesions of peripheral and coronary arteries. Res Exp Med 190: 77–87

    Article  CAS  Google Scholar 

  41. Dartsch PC, Weiss H-D, Betz E (1990) Human vascular smooth muscle cells in culture: growth characteristics and protein patterns by use of serum-free media supplements. Eur J Cell Biol 51: 285–294

    PubMed  CAS  Google Scholar 

  42. Fallier-Becker P, Rupp J, Fingerle J, Betz E (1990) Smooth muscle cells from rabbit aorta. In: Piper HM (ed) Cell culture techniques in heart and vessel research. Springer, Berlin Heidelberg New York London Paris Toronto Hong Kong, p 247

    Chapter  Google Scholar 

  43. Fischer-Dzoga K, Jones RM, Vesselinovitch D, Wissler RW (1973) Ultrastructural and immunhistochemical studies of primary cultures of aortic medial cells. Exp Mol Pathol 18: 162–176

    Article  Google Scholar 

  44. Hauss WH (1979) The role of the arterial wall cells in atherogenesis. Cardiovasc Res 17: 75–110

    CAS  Google Scholar 

  45. Hauss WH, Junge-Hülsing G, Gerlach V (1968) Die unspezifische Mesenchymreaktion. Thieme, Stuttgart

    Google Scholar 

  46. Kessel D, Sykes F (1984) Porphyrin accumulation by atheromatous plaque of the aorta. Photochem Photobiol 40: 59–62

    Article  PubMed  CAS  Google Scholar 

  47. Litvack F, Grundfest WS, Forrester JS, Fishbein MC, Swan HJC, Corday E, Rider DM, McDermid IS, Pacala TJ, Laundenslager JB (1985) Effects of hematoporphyrin derivative and photodynamic therapy on atherosclerotic rabbits. Am J Cardiol 56: 667–671

    Article  PubMed  CAS  Google Scholar 

  48. Orekhov AN, Karpova II, Tertov VV, Rudchenko SA, Andreeva ER, Krushinsky AV, Smirnov VN (1984) Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Am J Pathol 115: 17–24

    PubMed  CAS  Google Scholar 

  49. Prevosti LG, Wynne JJ, Becker CG, Linsker R, Shires T (1988) Laser-induced fluorescence detection of atherosclerotic plaque with hematoporphyrin dervative used as an exogenous probe. J Vasc Surg 7: 500–506

    PubMed  CAS  Google Scholar 

  50. Rhodin JG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology. Section 2: the cardiovascular system, vol II: vascular smooth muscle. American Physiological Society, Bethesda, p 1

    Google Scholar 

  51. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50: 172–186

    Article  PubMed  CAS  Google Scholar 

  52. Ross R (1986) The pathogenesis of atherosclerosis an update. N Eng! J Med 314: 488–500

    Article  CAS  Google Scholar 

  53. Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180: 1332–1339

    Article  PubMed  CAS  Google Scholar 

  54. Spears JR, Serur JR, Shropshire D, Paulin S (1983) Fluorescence of experimental atheromatous plaques with hematoporphyrin derivative. J Clin Invest 71: 395–399

    Article  PubMed  CAS  Google Scholar 

  55. Spokojny AM, Serur JR, Skillman J, Spears JR (1986) Uptake of hematoporphyrin derivative by atheromatous plaques: studies in human in vitro and rabbit in vivo. J Am Coll Cardiol 8: 1387–1392

    Article  PubMed  CAS  Google Scholar 

  56. Staubesand J (1959) Anatomie der Blutgefäße. I. Funktionelle Morphologie der Arterien, Venen and arterio-venösen Anastomosen. In: Ratschow M (Hrsg) Angiologie. Thieme, Stuttgart, p 23

    Google Scholar 

  57. Vesselinovitch D (1979) Animal models in atherosclerosis, their contributions and pitfalls. Artery 5: 193–206

    PubMed  CAS  Google Scholar 

  58. Vesselinovitch D, Fischer-Dzoga K (1981) Techniques in pathology in atherosclerosis research. Adv Lipid Res 18: 1–63

    PubMed  CAS  Google Scholar 

  59. Vincent GM, Mackie RW, Orme E, Fox J, Johnson M (1989) In vivo photosensitizer enhanced laser angioplasty in atherosclerotic Yucatan miniswine. Surg Med Lasers 2: 93 (abstr)

    Google Scholar 

  60. Weber E, Hämmerle H, Vatti R, Berti G, Betz E (1986) Co-cultivation of endothelial and smooth muscle cells on opposite sides of a porous membrane. Appl Pathol 4: 246–252

    PubMed  CAS  Google Scholar 

  61. Wechezak AR, Mansfield PB (1973) Isolation and growth characteristics of cell lines from bovine venous endothelium. In Vitro 9: 39–45

    Google Scholar 

  62. Wissler RW (1980) Principles of the pathogenesis of atherosclerosis. In: Braunwald E (ed) Heart Disease. Saunders Company, Philadelphia London Toronto, p 1221

    Google Scholar 

  63. Berk BC, Alexander RW (1989) Vasoactive effects of growth factors. Biochem Pharmacol 38: 219–225

    Article  PubMed  CAS  Google Scholar 

  64. Beavo JA (1988) Multiple isoenzymes of cyclic nucleotide phosphodiesterases. Adv Second Messenger Phosphoprotein Res 22: 1–38

    PubMed  CAS  Google Scholar 

  65. Dinerman JL, Mehta JL (1990) Endothelial, platelet and leucocyte interactions in ischemic heart disease: Insights into potential mechanisms and their clinical relevance. J Am Cell Cardiol 16: 207–222

    Google Scholar 

  66. Halbrügge M, Friedrich C, Eigenthaler M, Schanzenbächer P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265: 3088–3093

    PubMed  Google Scholar 

  67. Hathaway DR, March KL (1989) Molecular cardiology: New avenues for the diagnosis and treatment of cardiovascular disease. J Am Coll Cardiol 13: 265–282

    Google Scholar 

  68. Hathaway DR, March KL, Lash JA, Adam LP, Wilensky RL (1991) Vascular smooth muscle: A review of the molecular basis of contractility. Circulation 83: 382–390

    Google Scholar 

  69. IP JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle proliferation. J Am Coll Cardiol 15: 1667–1687

    Google Scholar 

  70. Meinecke M, Büchler W, Fischer L, Lohmann SM, Walter U (1990) cAMP-Dependent protein kinase: subunit diversity and functional role in gene expression. In: Jeserich G (ed) Cellular and molecular biology of myelination. Springer Berlin, pp 201–215

    Google Scholar 

  71. Mery P-F, Lohmann SM, Walter U, Fischmeister R (1991) Ca++-current is regulated by cyclic GMP-dendent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88: 1197–1201

    Article  PubMed  CAS  Google Scholar 

  72. Newby AG, Henderson AH (1990) Stimulus-secretion coupling in vascular endothelial cells. Ann Rev Physiol 52: 661–674

    Article  CAS  Google Scholar 

  73. Nolte C, Eigenthaler M, Schanzenbächer P, Walter U (1991) Comparison of vasodilatory prostaglandins with respect to cAMP-mediated phosphorylation of a target substrate in intact human platelets. Biochem Pharmacol (in press)

    Google Scholar 

  74. Nolte C, Eigenthaler M, Schanzenbächer P, Walter U (1991) Endothelial cell-dependent phosphorylation of a platelet protein mediated by cAMP- and cGMPelevating factors. J Biol Chem, submitted

    Google Scholar 

  75. Ross R (1986) The pathogenesis of atherosclerosis an update. N Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz SM, Heimark RL, Majesky MW (1990) Developmental mechanisms underlying pathology of arteries. Physiol Rev 70: 1177–1209

    PubMed  CAS  Google Scholar 

  77. Siess W (1989) Molecular mechanism of platelet activation. Physiol Rev 69: 58–178

    PubMed  CAS  Google Scholar 

  78. Vane JR, Änggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323: 27–36

    Article  PubMed  CAS  Google Scholar 

  79. Waldmann R, Nieberding M, Walter U (1987) Vasodilator-stimulated protein phosphorylation is mediated by cAMP- and cGMP-dependent protein kinases. Eur J Biochem 167: 441–448

    Article  PubMed  CAS  Google Scholar 

  80. Walter U, Waldmann R, Nieberding M (1988) Intracellular mechanism of vasodilators. Eur Heart J 9 (Suppl. H): 1–6

    Article  PubMed  CAS  Google Scholar 

  81. Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem 113: 42–88

    Google Scholar 

  82. Lüscher TF, Vanhoutte PM (1990) The endothelium: Modulator of cardiovascular function. CRC Press, Boca Raton, Fl, USA, pp. 1–215

    Google Scholar 

  83. Lüscher TF, Vanhoutte PM (1986) Endothelium- dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8: 344–348

    Article  PubMed  Google Scholar 

  84. Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent responses to aggregating platelets and serotonin in spontaneously hypertensive rats. Hypertension 8 (Suppl II): 55–60

    Article  Google Scholar 

  85. Lüscher TF, Raij L, Vanhoutte PM (1987) Endothelium-dependent responses in normotensive and hypertensive Dahl rats. Hypertension 9: 157–163

    Article  PubMed  Google Scholar 

  86. Lüscher TF, Vanhoutte PM, Raij LV (1987) Antihypertensive therapy normalizes endothelium-dependent relaxations in salt-induced hypertension of the rat. Hypertension 9 (Suppl III): 193–197

    Article  Google Scholar 

  87. Dohi Y, Thiel M, Bühler FR, Lüscher TF (1990) Activation of the endothelial L-arginine pathway in pressurized mesenteric resistance arteries: Effect of age and hypertension. Hypertension 15: 170–175

    Google Scholar 

  88. Linder L, Kiowski W, Bühler FR, Lüscher TF (1991) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo: Blunted response in essential hypertension. Circulation 81: 1762–1767

    Google Scholar 

  89. Tanner FC, Noll G, Boulanger CM, Lüscher TF (1991) Oxidized low-density lipoproteins inhibit relaxations of porcine coronary arteries: Role of scavenger receptor and endothelium-derived nitric oxide. Circulation (in press)

    Google Scholar 

  90. Kugiyama H, Kerns SA, Morrisett JD, Roberts R, Henry PD (1990) Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344: 160–162

    Article  PubMed  CAS  Google Scholar 

  91. Galle J, Mülsche A, Busse R, Bassenge E (1991) Effects of native and oxidized low-density lipoproteins on formation and inactivation of endothelium-derived relaxing factor. Arteriosclerosis and Thrombosis 11: 198–230

    Article  PubMed  CAS  Google Scholar 

  92. Boulanger CM, Hahn AWA, Lüscher TF (1991) Oxidized low-density lipoproteins release endothelin from the human and porcine endothelium. Circulation 82 (Suppl. III): 0891

    Google Scholar 

  93. Förstermann U, Mügge A, Alheid U, Haverich A, Frölich JC (1988) Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 62: 185–190

    Article  PubMed  Google Scholar 

  94. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge CH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Eng J Med 315: 1046–1051

    Article  CAS  Google Scholar 

  95. Bettmann MA (1987) Anticoagulation and restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 60: 17B

    Google Scholar 

  96. Block PC (1990) Restenosis after percutaneous transluminal coronary angiogplasty-anatomic and pathophysiological mechanisms. Circulation 81: IV - 2

    Google Scholar 

  97. Buchanan MR, Rischke JA, Hirsch D (1982) Aspirin inhibitis platelet function independent of the acetylation of cyclooxygenase. Thromb Res 25: 363

    Article  PubMed  CAS  Google Scholar 

  98. Chesebro JH, Loun JYT, Fuster V (1986) The pathogenesis and prevention of aortocoronary vein graft occlusion and restenosis after arterial angioplasty. J Am Coll Cardiol 8: 57B

    Article  Google Scholar 

  99. Clinical cardiology (1990): Progress in coronary stenting. Wednesday afternoon. Circulation 82: 111–539

    Google Scholar 

  100. Clowes AW, Karnovsky MJ (1977) Failure of certain antiplatelet drugs to-affect myointimal thickening following arterial endothelial injury in the rat. Lab Invest 36: 452

    PubMed  CAS  Google Scholar 

  101. Cook SL, Eigier NL, Shefer A, Hestrin L, Goldenberg T, Forrester JS, Litvack F (1991) Eximer laser coronary angioplasty of lesions not favorable for ballon angioplasty. J Am Coll Cardiol 17: 218A

    Google Scholar 

  102. Cox JL, Gotlieb AI (1988) Review of antiplatelet drug use in preventing restenosis following percutaneous transluminal coronary angioplasty. Can J Cardiol 4: 201

    PubMed  CAS  Google Scholar 

  103. Faxon DP, Sanborn TA, Weber VJ (1984) Restenosis following transluminal angioplasty in experimental arteriosclerosis. Arteriosclerosis 4: 189

    Article  PubMed  CAS  Google Scholar 

  104. Hinohara T, Selmon MR, Robertson GC, Vetter JW, Rowe MH, Bartzokis TC, Braden LJ, Simpson JB (1991) Angiographic predictors of restenosis following directional coronary atherectomy. J Am Coll Cardiol 17: 385A

    Google Scholar 

  105. Kaltenbach M, Kober G, Scherer D, Vallbracht C (1985) Recurrence rate after successful coronary angioplasty. Eur Heart J 6: 276

    PubMed  CAS  Google Scholar 

  106. King SB (1990) Prediction of acute closure in percutaneous transluminal coronary angioplasty. Circulation 81: IV - 5

    Google Scholar 

  107. Klein LW, Rosenblum J (1990) Restenosis after succesful percutanous transluminal coronary angiplasty. Progr Cardiovasc Dis 32: 365

    Article  CAS  Google Scholar 

  108. Lam JYT, Chesebro JH, Steele PM, Badimon L, Fuster V (1987) Is vasospasm related to platelet deposition? Circulation 75: 243

    Article  PubMed  CAS  Google Scholar 

  109. Niazi K, Cragg DR, Strzelecki M, O’Neill WW (1991) Angiographic risk factors for coronary restenosis following mechanical rotational atherectomy J Am Coll Cardiol 17: 218A

    Google Scholar 

  110. McBride W, Lange RA, Hillis LD (1988) Restenosis after successful coronary angioplasty. N Eng J Med 318: 1734

    Article  CAS  Google Scholar 

  111. Pepine CJ, Hirshfeld JW, Mac Donald RG (1988) A controlled trial of corticosteroids to prevent restenosis following coronary angioplaty. Circulation 78: II - 291

    Google Scholar 

  112. Schanzenbächer P, Grimme M, Walter U, Kochsiek K (1991) Wirkung hoher and niedriger Dosen Acetylsalicylsäure auf die Re-Stennosierungsrate nach primär erfolgreicher koronarer Angioplastie. Dtsch med Wschr 116: 481

    Article  PubMed  Google Scholar 

  113. Schwartz L, Bourassa MG, Lesperance J, Aldridge HE, Kazim F, Salvatori VA, Henderson M, Bonan R, David PR (1988) Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. N Engl J Med 318: 1714

    Article  PubMed  CAS  Google Scholar 

  114. Sigwart U, Puel J, Mirkovitch F, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusions and restenosis after transluminal angioplasty. N Engl J Med 316: 701

    Article  PubMed  CAS  Google Scholar 

  115. Steele PM, Chesebro JH, Stanson AW (1985) Ballon angioplasty: natural history of the pathophysiological response to injury in a pig model. Circ Res 57: 105

    Article  PubMed  CAS  Google Scholar 

  116. Stein B, Fuster V, Israel DH, Cohen M, Badimon L, Badimon JJ, Chesebro JH (1989) Platelet inhibitor agents in cardiovascular disease: an up date. J Am Coll Cardiol 14: 813

    Article  PubMed  CAS  Google Scholar 

  117. Thornton MA, Grüntzig AR, Hohmann J, King SB, Douglas JS (1984) Coumarin and aspirin in prevention of recurrence after transluminal coronary angioplasty: a randomized study. Circulation 69: 721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, J. et al. (1991). Pathophysiologie der Gefäßwand — Bedeutung für internistische Erkrankungen. In: Miehlke, K. (eds) Verhandlungen der Deutschen Gesellschaft für Innere Medizin. Verhandlungen der Deutschen Gesellschaft für Innere Medizin, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84710-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84710-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55080-8

  • Online ISBN: 978-3-642-84710-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics