Tumormarker

  • W. Fischbach
  • G. Klöppel
  • Th. Kirchner
  • C. Wagener
  • W. Becker
  • F. Wolf
  • W. Fischbach
  • M. Vierbuchen
  • A. Larena
  • F-G. Hanisch
  • G. Uhlenbruck
  • A. Knuth
  • R. Klingel
  • R. Moll
  • W. Dippold
  • K.-H. Büschenfelde
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 97)

Zusammenfassung

Tumorzellantigene, die zur Identifizierung, Charakterisierung und Diagnostik von Tumoren beitragen, werden generell als Tumormarker oder Tumor-assoziierte Antigene bezeichnet (TAA). Tumormarker sind trotz ihrer anspruchsvollen Namensgebung weder spezifisch für bestimmte Neoplasien noch treten sie exclusiv in malignen Tumoren auf; man findet sie auch in embryonalen, normalen und/oder regenerierenden Geweben. Ihre Markerfunktion für Tumoren erlangen sie meistens erst durch eine aberrante Expression in neoplastischen Zellen und/oder vermehrte Sekretion durch diese Zellen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554PubMedGoogle Scholar
  2. Candlish W, Kerr IB, Simpson W (1986) lmmunohytochemical demonstration and significance of p21 ras family oncogene product in benign and malignant breast disease. J Pathol 150: 163–167Google Scholar
  3. Chu TM (1987) Biochemical markers for human cancer. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York London Paris Tokyo (Current topics in pathology 77 ), p 19Google Scholar
  4. Denk H (1987) Immunohistochemical methods for the demonstration of tumor markers. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York London Paris Tokyo (Current topics in pathology 77 ), p 47Google Scholar
  5. De Potter CR, Quatacker J, Maertens G, Van Daele S, Pauwels C, Verhofstede C, Eechaute W, Roels H (1989) The subcellular localization of the neu protein in human normal and neoplastic tissue. lnt J Cancer 44: 969–974Google Scholar
  6. Gould VE, Shin SS, Manderino GL, Rittenhouse HG, Tomita JT, Gooch GT (1988) Selective expression of a novel mucin-type glycoprotein in human tumors: Immunohistochemical demonstration with Mab A-80. Hum Pathol 19: 623–627PubMedGoogle Scholar
  7. Ho JJL, Chung Y, Fujimoto Y, Bi N, Ryan W, Yuan S, Byrd JC, Kim YS (1988) Mucin-like antigens in a human pancreatic cancer cell line identified by murine monoclonal antibodies SPan-1 and YPan-1. Cancer Research 48: 3924–3931PubMedGoogle Scholar
  8. Johnson KH, O’Brien TD, Betsholtz C, Westermark P (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Eng J Med 321: 513–518Google Scholar
  9. Kalthoff H, Kreiker C, Schmiegel WH, Greten H, Thiele HG (1986) Characterization of CA 19–9 bearing mucins as physiological exocrine pancreatic secretion products. Cancer Research 46: 3605–3607PubMedGoogle Scholar
  10. Klöppel G (1987) Immunocytochemical tumour markers in neoplasms of the gut, pancreas, and liver. In: Klapdor R (ed) New tumour markers and their monoclonal antibodies. Actual clinical relevance for diagnosis and therapy of solid tumours. Thieme, Stuttgart New York, p 303Google Scholar
  11. Klöppel G, Heitz Ph (1988) Pancreatic endocrine tumors. Path Res Pract 183: 155–168PubMedGoogle Scholar
  12. Lee I, Gould VE, Radosevich JA, Thor A, Ma Y, Schlom J, Rosen ST (1987) Immunohistochemical evaluation of ras oncogene expression in pulmonary and pleural neoplasms. Virchows Arch B 53: 146–152PubMedGoogle Scholar
  13. Mol R (1987) Epithelial tumor markers: cytokeratins and tissue polypeptide antigen. In: Seifert G (ed) Morphological tumor markers. General aspects and diagnostic relevance. Springer, Berlin Heidelberg New York London Paris Tokyo (Current topics in pathology 77 ), p 71Google Scholar
  14. Seeger RC, Brodeur GM, Sather H, Dalton A, Sieger SE, Wong KY, Hammond D (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Eng J Med 313: 1111–1116Google Scholar
  15. Sell S (1990) Cancer-associated carbohydrates identified by monoclonal antibodies. Hum Pathol 21: 1003–1019PubMedGoogle Scholar
  16. Shimizu M, Saitoh Y, Itoh H (1990) Immunohistochemical staining of Ha-ras oncogene product in normal, benign, and malignant human pancreatic tissue. Hum Pathol 21: 607–612PubMedGoogle Scholar
  17. Tada M, Yokosuka O, Ornata M, Ohto M, Isono K (1990) Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer 66: 930–935PubMedGoogle Scholar
  18. Tamkun JW, De Simone DW, Fonda D, et al. (1986) Structure of integrin, a glucoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46: 271–282PubMedGoogle Scholar
  19. Williams AF, Barclay AN (1988) The immunoglobulin superfamily domains for cell surface recognition. Ann Rev Immunol 6: 381–406Google Scholar
  20. Abenoza P, Manivel JC, Swanson PE, Wick MR (1986) Synovial sarcoma: Ultrastructural study and immunohistochemical analysis by a combined peroxidaseantiperoxidase/avidin-biotin-peroxidase complex procedure. Hum Pathol 17: 1107–1115Google Scholar
  21. Altmannsberger M, Alles JU, Fitz H, Jundt G, Osborn M (1986) Mesenchymale Tumormarker. Verh Dtsch Ges Path 70: 51–63Google Scholar
  22. Altmannsberger W, Osborn M (1987) Mesenchymal tumor markers: Intermediate filaments. In: Seifert G (ed) Morphological tumor markers. Current Topics in Pathology 77. Springer, Berlin Heidelberg New York, pp 71–101Google Scholar
  23. Boulter JB, Goldman D, Evans K, Martin G, Stengelin S, Heinemann S, Patrick J (1986) Isolation, sequence and preparation of a cDNA clone coding for the gamma subunit of mouse muscle nicotinic acetylcholine receptor. J Neurosci Res 16: 37–49PubMedGoogle Scholar
  24. Brehm P, Henderson L (1988) Regulation of acetylcholine receptor channel function during development of skeletal muscle. Dev Biol 129: 1–11PubMedGoogle Scholar
  25. Brooks JJ (1986) The significance of double phenotypic patterns and markers in human sarcomas: a new model of mesenchymal differentiation. Am J Pathol 126: 113–123Google Scholar
  26. Brown DC, Theaker JM, Banks PM, Gatter KC, Mason DY (1987) Cytokeratin expression in smooth muscle and smooth muscle tumors. Histopathology 11: 477–486PubMedGoogle Scholar
  27. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNA for bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47: 19–28PubMedGoogle Scholar
  28. Croce CM, Tsujimoto Y, Erikson J, Nowell P (1984) Biology of disease: chromosome translocations and B cell neoplasia. Lab Invest 51: 258–267PubMedGoogle Scholar
  29. Dalla Favera R, Bregni M, Erikson J, Patterson D. Gallo RC, Croce CM (1982) Human c-myc one-gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824Google Scholar
  30. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000PubMedGoogle Scholar
  31. De Mascarel A, Merlio J-P, Coindre J-M, Goussot J-F, Broustet A (1989) Gastric large cell lymphoma expressing cytokeratin but no leukocyte common antigen. A diagnostic dilemma. Am J Clin Pathol 91: 478–481Google Scholar
  32. Dolman CL (1989) Glial fibrillary acidic protein and cartilage. Acta Neuropathol 79: 101–103PubMedGoogle Scholar
  33. Enzinger FM, Weiss SW (1988) Soft Tissue tumors. 2nd ed. Mosby St. Louis Gerharz CD, Moll R, Meister P, Knuth A, Gabbert H (1990) Cytoskeletal heterogeneity of an epitheloid sarcoma with expression of vimentin. cytokeratins. and neurofilaments. Am J Surg Pathol 14:274283Google Scholar
  34. Gould VE, Koukoulis GK, Jansson DS, Nagle RB, Franke WW, Moll R (1990) Coexpression patterns of vimentin and glial filament protein with cytokeratins in the normal, hyperplastic, and neoplastic breast. Am J Pathol 137: 1143–1155PubMedGoogle Scholar
  35. Griesser H, Boje Ch, Parwaresch M-R, Lennert K (1990) Molekulargenetische Analyse der Translokation (14;18) bei malignen B-Zell-Lymphomen. Verh Dtsch Ges Path 74: 559Google Scholar
  36. Gustafsson H, Virtanen I, Thornell L-E (1989) Glial fibrillary acidic protein and desmin in salivary neoplasms. Expression of four different types of intermediate filament proteins within the same cell type. Virchows Archiv B Cell Pathol 57: 303–313Google Scholar
  37. Gustmann Ch, Feller AC, Altmannsberger M (1990) Koexpression von CD30 and Keratin in großzelligen anaplastischen Lymphomen and embryonalen Karzinomen des Hodens. Verh Dtsch Ges Path 74: 492Google Scholar
  38. Harms D, Schmidt D (1986) Spezielle Tumoren des Kindesalters. Verh Dtsch Ges Pathol 70: 190–204PubMedGoogle Scholar
  39. Hesselmans LF, Jennekens GI, Van den Oord CJM, Veldman H, Vincent A (1989) Immunoreactivity to fetal acetylcholine receptor disappears during the 33d week of human development and reappears with denervation. 2nd European Conference on Myasthenia Gravis. Tremezzo. Abstracts: 51Google Scholar
  40. Hey MM, Feller AC, Müller-Hermelink HK (1990) Nachweis der chromosomalen Translokation t(11;14) and t(14;18) in niedrig malignen Non-Hodgkin-Lymphomen der B-Zell-Reihe. Verh Dtsch Ges Path 74: 560Google Scholar
  41. Hiti AL, Bogenmann E, Gonzales F, Jones PA (1989) Expression of the MyoD1 muscle determination gene defines differentiation capability but not tumorigenicity of human rhabdomyosarcomas. Mol Cell Biol 9: 4722–4730PubMedGoogle Scholar
  42. Kirchner Th, Geuder KI, Marx A, Müller-Hermelink HK (1990) Nikotinische Azetylcholin-Rezeptoren in Tumoren mit rhabdomyomatöser Differenzierung. Immunhistochemischer and molekulargenetischer Nachweis. Verh Dtsch Ges Path 74: 409–414Google Scholar
  43. Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH (1982) Structure and function of an acetylcholine receptor. Biophys J 37: 371–382PubMedGoogle Scholar
  44. Klöppel G, Caselitz J (1987) Epithelial tumor markers: Oncofetal antigens (carcinoembryonic antigen, alpha fetoprotein) and epithelial membrane antigen. In: Seifert G (ed)Google Scholar
  45. Morphological tumor markers. Current Topics in Pathology 77. Springer, Berlin Heidelberg New York, pp 103–132Google Scholar
  46. Kosmehl H, Langbein L, Katenkamp D (1990) Transient cytokeratin expression in skeletal muscle during murin embryogenesis. Anat Anz 171: 39–44PubMedGoogle Scholar
  47. Marx A, Geuder KI, Altmannsberger M, Schömig E, Kirchner Th, Müller-Hermelink HK (1990). Die Bedeutung neuronaler Azetylcholinrezeptoren als Differenzierungsantigene in Neuroblastomen and Paragangliomen. Verh Dtsch Ges Path 74: 354–358Google Scholar
  48. Miettinen M, Rapola J (1989) Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors. Expression of cytokeratin and the 68-kD neurofilament protein. Am J Surg Pathol 13: 120–132PubMedGoogle Scholar
  49. Mishina M, Takai T, Imoto K, Noda T, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321: 406–411PubMedGoogle Scholar
  50. Moll R (1987) Epithelial tumor markers Cytokeratins and tissue polypeptide antigen (TPA). In: Seifert G (ed) Morphological tumor markers. Current Topics in Pathology 77. Springer, Berlin Heidelberg New York, pp 71–101Google Scholar
  51. Moll R (1988) Differenzierungsprogramme des Epithels and ihre Änderungen. Verh Dtsch Ges Path 72:102–112 — Moll R (1989) Intermediärfilamentmuster des Nephrons and des Urothels. Verh Dtsch Ges Path 73: 314–320Google Scholar
  52. Nowell PC, Croce CM (1986) Chromosomes, genes, and cancer. Am J Pathol 125: 8–15Google Scholar
  53. Osborn M, Hill C, Altmannsberger M, Weber K (1986). Monoclonal antibodies to titin in conjunction with antibodies to desmin separate rhabdomyosarcomas from other tumor types. Lab Invest 55: 101–108PubMedGoogle Scholar
  54. Pezzella F, Ralfkiaer E, Gatter K, Mason DY (1990a). The 14;18 translocation in European cases of follicular lymphoma: Comparison of Southern blotting and the polymerase chain reaction. Br J Haematol 76: 58–64Google Scholar
  55. Pezzella F, Tse AGD, Cordell JL, Pulford KAF, Gatter KC, Mason DY (1990b) Expression of the bc1–2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol 137: 225–232PubMedGoogle Scholar
  56. Piette J, Bessereau J-L, Huchet M, Changeux J-P (1990) Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor a-subunit gene. Nature 345: 353–355PubMedGoogle Scholar
  57. Schmidt D, Leuschner J, Moeller R, Harms D (1990) Immunhistochemische Befunde bei Rhabdomyosarkomen. Pathologe 11: 283–289PubMedGoogle Scholar
  58. Schoepfer R, Luther M, Lindstrom J (1988) The human medulloblastoma cell line TE 671 expresses a muscle-like acetylcholine receptor: cloning of the alpha-subunit cDNA. FEBS Letters 226: 235–240PubMedGoogle Scholar
  59. Schröder S (1988) Pathologie and Klinik maligner Schilddrüsentumoren. Klassifikation, Immunhistologie, Prognosekriterien. Veröffentlichungen aus der Pathologie. Band 130. Gustav Fischer, Stuttgart New YorkGoogle Scholar
  60. Scrable H, Witte D, Shimada H, Seemayer T, Wang-Wuu S, Soukup S, Koufos A, Houghton P, Lampkin B, Cavanee W (1989) Molecular differential pathology of rhabdomyosarcoma. Genese Chromosomes Cancer 1: 23–35Google Scholar
  61. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB (1988) MyoDl: a nuclear phophoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411PubMedGoogle Scholar
  62. Thayer MJ, Weintraub H (1990) Activation and repression of myogenesis in somatic cell hybrids: Evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell 63:23 —32Google Scholar
  63. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM (1985a) Clustering of breakpoints on chromosome 11 in human B cell neoplasms with the t(11;14) chromosome translocation. Nature 315: 340–343PubMedGoogle Scholar
  64. Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985b) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443PubMedGoogle Scholar
  65. Tsujimoto Y, Croce CM (1986) Analysis of the structure, transcripts and protein products of bel-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 83: 5214–5218PubMedGoogle Scholar
  66. Tsujimoto Y, Ikegaki N, Croce CM (1987) Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. Oncogene 2: 3–7PubMedGoogle Scholar
  67. Tzartos S, Langeberg L, Hochschwender S, Lindstrom J (1983) Demonstration of a main immunogenic region on acetylcholine receptor from human muscle using monoclonal antibodies to human receptor. FEBS Letters 158: 116–118PubMedGoogle Scholar
  68. Tzartos S, Langeberg L, Hochschwender S, Swanson LW, Lindstrom J (1986) Characteristics of monoclonal antibodies to denatured Torpedo and to calf acetylcholine receptor: Species, subunit and region specificity. J Neuroimmunol 10: 235–253Google Scholar
  69. Van de Berghe E, De Wolf-Peeters C, Van den Oord J, Wlodarska I, Delabie J, Stul M, Thomas J, Michaux J-L, Mecucci C, Cassiman J-J, Van den Berghe H (1991) Trans-location (11;14): A cytogenetic anomaly associated with B-cell lymphomas of the nonfollicle centre cell lineage. J Pathol 163: 13–18Google Scholar
  70. Van Muijen GNP, Ruiter DJ, Warnaar SO (1987) Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest 57: 359–369PubMedGoogle Scholar
  71. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adern MA, Lassar AB, Miller D (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86: 5434–5438PubMedGoogle Scholar
  72. Weiss LM, Warnke RA, Sklar J, CIeary ML (1987) Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas, N Engl J Med 317: 1185–1189PubMedGoogle Scholar
  73. Witzemann V, Barg B, Nishikawa Y, Sakmann B, Nurna S (1987) Differential regulation of muscle acetylcholine receptor gamma-and epsilon-subunit mRNASs. FEBS Letters 223: 104–112PubMedGoogle Scholar
  74. Zarbo RJ, Gown AM, Nagle RB, Visscher DW, Crissman JD (1990) Anomalous cytokeratin expression in malignant melanoma one-and twodimensional western blot analysis and immunohistochemical survey of 100 melanomas. Mod Pathol 30: 494–501Google Scholar
  75. Zech L, Haglund V, Nilsson N, Klein G (1976) Characteristic chromosomal abnormalities in biopsis and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int.1 Cancer 17: 47Google Scholar
  76. Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827PubMedGoogle Scholar
  77. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJR, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P, Sheer D, Solomon E, Spurr NK (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614–617PubMedGoogle Scholar
  78. Dippold WG, Bernhard H, Klingel R, Dienes H-P, Kron G, Schneider B, Knuth A, Meyer zum Büschenfelde K-H (1987) A common epithelial cell surface antigen (EPM-1) on gastrointestinal tumors and in human sera. Cancer Res 47: 3873–3879PubMedGoogle Scholar
  79. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247: 49–56PubMedGoogle Scholar
  80. Friend S, Bernards R, Rogelj S, Weinberg R, Rapaport J, Albert D, Dryja T (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646PubMedGoogle Scholar
  81. Godley JM, Brand SJ (1989) Regulation of the gastrin promoter by epidermal growth factor and neuropeptides. Proc Natl Acad Sci USA 86: 3036–3040PubMedGoogle Scholar
  82. Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467–481PubMedGoogle Scholar
  83. Kalthoff H, Kreiker C, Schmiegel W-H, Greten H, Thiele H-G (1986) Characterization of CA 19–9 bearing mucins as physiological exocrine pancreatic secretion products. Cancer Res 46: 3605–3607PubMedGoogle Scholar
  84. Kievit J, van de Felde DJH (1990) Utility and cost of carcinoembryonic antigen monitoring in colon cancer follow-up evaluation, a Markov analysis. Cancer 65: 2580–2587PubMedGoogle Scholar
  85. Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJK, Preisinger AC, Hamilton SR, Hedge P, Markham A, Carlson M, Joslyn G, Groden J, White R, Miki Y, Miyoshi Y, Nishisho I, Nakamura Y (1991) Identification of a gene located at Chromosome 5q21 that is mutated in colorectal cancers. Science 251: 1366–1370PubMedGoogle Scholar
  86. Klingel R, Boukamp P, Moll R, Tilgen W, Fusenig NE, Meyer zum Büschenfelde K-H, Dippold W (1990) Expression of epithelial anigens Exo-1 and EPM-1 in human epidermal keratinocyte maturation and benign and malignant neoplasia. Cancer Res 50: 7668–7676PubMedGoogle Scholar
  87. Knuth A, Dippold W, Meyer zum Büschenfelde K-H (1987) Klinische Relevanz von Tumormarkern. Therapiewoche 37: 1569–1573Google Scholar
  88. Köhler G, Milstein C (1975) Continuous culture of fused cells screting antibody of predefined specificity. Nature (London) 256: 495–497Google Scholar
  89. Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P (1979) Colorectal carcinoma antigens detected by habridoma antibodies. Somat Cell Genet 5: 857–972Google Scholar
  90. Lane DP, Benchimol S, (1990) p53: oncogene or antioncogene? Genes Dev 4: 1–8Google Scholar
  91. Leppert M, Dobbs M, Scambler P, O’Connell P, Nakamura Y, Stauffer D, Woodward S, Burt R, Hughes J, Gardner E, Lathrop M, Wasmuth J, Lalouel J, M, White R (1987) The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 238: 1411–1413Google Scholar
  92. Moll R (1987) Epithelial tumor markers: cytokeratins and Tissue Polypeptide Antigen (TPA). In: Seifert G (ed) Current Topics in Pathology Vol 77: Morphological Tumor Markers, Springer, Berlin Heidelberg New York, pp 71–101Google Scholar
  93. Moll R, Schiller DL, Franke WW (1990) Identification of Protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 111: 567–580PubMedGoogle Scholar
  94. Neumaier M, Zimmermann W, Shively L, Hinoda Y, Riggs AD, Shively JE (1988) Characterization of a cDNA clone for the nonspecific cross-reacting antigen ( NCA) and a comparison of NCA and carcinoembryonic antigen. J Biol Chem 263: 32023207Google Scholar
  95. Oikawa S, Kosaki G, Nakazato H (1987) Molecular cloning of a gene for a member of carcinoembryonic antigen (CEA) gene family; signal peptide and N-terminal domain sequences of nonspecific crossreacting antigen ( NCA ). Biochem Biophys Res Commun 146: 464–469Google Scholar
  96. Schmiegel W (1988) Immunologisch definierte tumorassoziierte Antigene: Möglichkeiten und Grenzen ihrer Anwendung in der Gastroenterologie. Immun Infekt 16: 213–219PubMedGoogle Scholar
  97. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello FC, Patel I, Rider SH (1987) Chromosome 5 allele loss in human colorectal carcinoma. Nature 328: 616–619PubMedGoogle Scholar
  98. Tahara E (1990) Growth factors and oncogenes inhuman gastrointestinal carcinomas. J Cancer Res Clin Oncol 116: 121–131PubMedGoogle Scholar
  99. Thompson J, Zimmermann W (1988) The carcinoembryonic antigten ( CEA) gene family structure, expression, and evolution. Tumor Biol 9: 63–83Google Scholar
  100. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smitts AMM, Bos JL (1988) Genetic alterations during colorectal tumor development. N Engl J Med 319: 525–532PubMedGoogle Scholar
  101. Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y, White R (1989) Allelotype of colorectal carcinomas. Science 244: 207–211PubMedGoogle Scholar
  102. Weinberg RA (1989) Oncogenes, antiocogenes and the molecular basis of multistep carcinogenesis. Canser Res 49: 3713–3721Google Scholar
  103. Weinstein IB (1989) The orgins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment — 27th G.H.A. Clowes memorial award lecture. Cancer Res 48: 4135–4143Google Scholar
  104. Xu M, Real FX, Welt S, Schüssler MH, Oettgen HF, Old LJ (1989) Expression of TAG-72 in normal colon, transitional mucosa, and colon cancer. Int J Cancer 44: 985–989PubMedGoogle Scholar
  105. Bremer Ec, SB Levery, SB Sonnino et al. (1986) Characterization of a glycosphingolipid antigen defined defined by the monoclonal antibody MBr1 expressed in normal and neoplastic cells of human mammary gland. J Biol Chem. 259: 14773–14777Google Scholar
  106. Cahan LD, Irie RF, Singh R, Cassident A, Paulson JC (1982) Identification of a human adenoectodermal tumor antigen (OFA-I-2) as a ganglioside GD2. Proc Natl Acad Sci USA 79: 7629–7633PubMedGoogle Scholar
  107. Carter RL, Penman HG (1969) Infectious mononucleosis. Oxford, England, Blackwell — Cepellini R (1959) Physiological genetics of human blood factors. In: Wolstenholme, O’Connor, Biochemistry of Human Genetics. Ciba Foundation Symp. Churchill, London, pp 242–263Google Scholar
  108. Feizi T (1989) Glycoprotein oligosaccharides as recognition structures. In: Ciba Found. Symp. vol 145, Wiley & Sons, pp 62–79.Google Scholar
  109. Feizi T, Childs RA (1987) Carbohydrates as antigenic carbohydrates of glycoproteins. Biochem J 245: 1–11PubMedGoogle Scholar
  110. Fredman P, Brezicka T, Holmgren J, Lindholm L, Nilsson O, Svennerholm L (1986) Binding specificity of monoclonal antibody to ganglioside, Fuc-Gml. Biochem Biophys Acta 875: 316–323Google Scholar
  111. Fukushi Y, Nudelman E, Levery StB, Higuchi T, Hakomori S (1986) A novel disialoganglioside (IV3NeuAcIII6NeuAcLc4) of human adenocarcinoma and the monoclonal antibody (FH9) defining this disialosyl structure. Biochemistry 25: 2859–2866PubMedGoogle Scholar
  112. Fukushi Y, Orikasa S, Shepard T, Hakomori S (1986a) Changes of Le’ and dimeric Lex haptens and their sialylated antigens during development of human kidney and kidney tumors. J Urol 135: 1048–1056PubMedGoogle Scholar
  113. Gold DV, Mattes MJ (1988) Monoclonal antibody B 73.2 reacts with a core region structure of 0-linked carbohydrates. Tumour Biol 9: 137–144PubMedGoogle Scholar
  114. Hanfland P, Kardowicz M, Peter-Katalinic J, Pfannenschmidt G, Crawford RJ, Graham HA, Egge H (1986) Immunochemistry of the Lewis blood group system. Isolation and structures of the Lewis c active and related sphingolipids from the plasma of blood group OLe(a-b-) nonsecretors. Arch Biochem Biophys 246: 655–672Google Scholar
  115. Hill DD, Reynolds JA, Hill RL (1977) Purification, composition, molecular weight and subsunit structure of amine submamillary mucin. J Biol Chem 252: 3791–3798PubMedGoogle Scholar
  116. Hakomori S, Wang SE, Young WW, Jr (1977) Isoantigenic expression or Forssman glycolipid in human gastric and colonic mucosa: its posibble identity with “A like antigen” in human cancer. Proc Natl Acad Sci USA 74: 3023–3027PubMedGoogle Scholar
  117. Hakomori S, Kanagi R (1983) Glycospingolipids as tumorassociated and differentiation markers. J Natl Cancer Inst 71: 231–251PubMedGoogle Scholar
  118. Hirabayashi Y, Hanaoka A, Matsumoto M, Matsubra T, Tagawa M, Wakabayashi S, Tanaguchi M (1985) Sungeneic monoclonal antibody against melanoma antigen with interspecies cross reactivity recognizes GM.3, a prominent ganglioside of B 16 melanoma. J Biol Chem 260: 1332–13333Google Scholar
  119. Irie RF, Sze LL, Saxton RE (1982) Human antibody to OFA-I, a tumor antigen, produced in vitro by Epstein-Barr transformed human B lymphoid cell lines. Proc Natl Acad Sci USA 79: 5666–5670PubMedGoogle Scholar
  120. Irimura T, Nakaima M, Ota DM, Cleary KF, Nicolson GL (1989) Glycoconjugates and tumor metastasis. In: Wu A (ed) The Molecular Immunology of Complex Carbohydrates, Plenum Press pp 678–704Google Scholar
  121. Iseki S, Masaki S (1953) Transformation of blood group substances by bacterial enzymes. Proc Jap Acad Sci 29: 460Google Scholar
  122. Kabat EA (1973) Immunochemical studies on the carbohydrate moiety of water soluble blood group A, B, H, Lea, and Le b substances and their precursor I antigens. Carbohydrates in solution. Adv Chem Ser 117, pp 334–361 (American Chemical Society Washington 1973 )Google Scholar
  123. Kano K, Milgram F (1976) Heterophile antigens and antibodies in medicin Curr Top Microbiol Immunol 77: 43–49Google Scholar
  124. Kannagi R, Levery SB, Ishigama F, Hakomori S, Shevinsky LH, Knowles BB, Solter (1983) New globoseries glycolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage specific embryonic antigen 3. J Biol Chem 258: 8934–8942Google Scholar
  125. Kannagi R, Levers StG, Hakormori S (1984) Blood group H antigen with gobo-series structure. FEBS Lett 175: 397–401PubMedGoogle Scholar
  126. Kasai H, Galton PT, Terasaki PI, Wakinaka, Kawahara M, Root T, Hakomori S (1986) Tissue distribution of the PH antigen as determinant by monoclonal antibody. Cancer Res 46: 1989Google Scholar
  127. Killion JJ, Fidler (1989) The biology of tumor metastases. Sem Oncology 16: 106–105Google Scholar
  128. Kim YS, Yuan M, Itzkowit StH, Sun Q, Palekar A, Trump BF, Hakomori S (1986) Expression of Le d and extended Le d blood group related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 46: 5985–5992PubMedGoogle Scholar
  129. Lemieux RU, Baker DA, Weinstein WM, Schweitzer CM (1981) Artificial antigens. Antibody preparation for the localization of the Lewis determinants in tissue. Biochemistry 20: 199–205Google Scholar
  130. Kornfeld R, Kornfeld S (1983) The structure of glycoprotein oligosaccharides. In: Lennarz WJ (ed) The Biochemistry of Glycoproteins and Proteoglycans. New York, Plenum, pp 1–34Google Scholar
  131. Le Pendu J, Lambert F, Samuelsson BE, Breimer ME, Seitz RC, Urdanitz MP, Suesa N, Ratcliffe M, Franscoise A, Poschmann A, Vinas J, Oriol R (1986) Monoclonal antibodies specific for type 3 and type 4 chain-based blood group determinants. Relationship to the Al and A2 subgroups. Glycoconjugate J 3: 255–271Google Scholar
  132. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V (1982) A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 257: 14365–14369PubMedGoogle Scholar
  133. Magnani JL, Steplewski Z, Koprowski H, Ginsburg V (1983) V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as mucins. Cancer Res 43: 5489–5492PubMedGoogle Scholar
  134. Martensson S, Duc C, Pahlsson P (1988) A carbohydrate epitope asociated with human squamous lung cancer. Cancer Res 48. 2125–2131PubMedGoogle Scholar
  135. Menard S, Tagliabue E, Canevari S, Fossati G, Calnaghi MI (1983) generation of monoclonal antibodies reacting with normal and cancer cells of human breast. Cancer Res 43: 1295–1300Google Scholar
  136. Nicolson GL (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype: front oncogene to oncofetal gene expression. Cancer Re 47: 1473–1487Google Scholar
  137. Nilsson O, Brezika FT, Holmgren J, Lindholm L, Sorenson S, Yngvason F, Svennerholm L (1984) Fucosyl GM1, a ganglioside associated with small cell lung carcinomas. Glycoconjugate 1: 43–49Google Scholar
  138. Nudelman E, Fukushi Y, Levery STB, Higuchi T, Hakomori S (1986) Novel fucolipids of human adenocarcinoma: Disialosyl Le a antigen (III4FucIII6NeuAcIV3NeuAcLc4) of human colonic adenocarcinoma and the monoclonal antibody (FH7) defining this structure. J Biol Chem 261: 5487–5495PubMedGoogle Scholar
  139. Nudelman E, Kannagi R, Hakomori S, Parsons M, Lipinski M, Wiels J, Fellous M, Tursz T (1983) A glycolipid antigen associated with Burkitt Lymphoma defined by a monoclonal antibody. Science 220: 509–511PubMedGoogle Scholar
  140. Oriol R, Danilous J, Lemieux RU, Terasaki PI, Bernoco D (1980) Lymphocytotoxic definition of combined ABH and Lewis antigens and their transfer from sera to lymphocytes. Human Immunol 1: 195–205Google Scholar
  141. Oriol R, Le Pendu J, Sparkes RS, Sparkes MC, Crist M, Gale R, Terasaki PI (1981) Insights into the expression of ABH and Lewis antigens through human bone marrow transplantation. Am J Hum Genet 33: 551–560PubMedGoogle Scholar
  142. Persson BE, Stahle E, Pahlman L et al. (1988) CA 50 as a tumor marker for monitoring colorectal cancer: Antigen rises in patients postoperatively with colorectal, gastric, and pancreatic carcinoma. J Clin Immunol 2: 135Google Scholar
  143. Pukel CS, Lloyd KO, Trabassos LR, Dippold WG, Oettgen HF, Old LJ (1982) GD3 a prominent ganglioside of human melanoma. Detection and characterization by mouse monoclonal antibodies. J Exp Med 155: 133–1147Google Scholar
  144. Rettig WJ, Cordin-Cardo G et al. (1985) Heigh molecular weight glycoproteins of human teratocarcinoma defined by monoclonal antibodies to carbohydrate determinants. Cancer Res 45: 825–821Google Scholar
  145. Samuelsson BE (1983) Enzymatic synthesis of a blood group A related difucosyl heptaglycosylceramide with a type 2 carbohydrate chain. Febs Lett 152: 305–310PubMedGoogle Scholar
  146. Scharl A, Göhring UJ, Vierbuchen M, Küsters B, Würz H (1990) Der Epidermal-Growth-Factor-Rezeptor ( EGF-R) im humanen Mammakarzinom-Marker einer morphologisch-funktionellen Entdifferenzierung. Geburtsh Frauenheik 50: 877–882Google Scholar
  147. Schulz G, Cheresh DA, Varki NM, Staffileno LK (1984) Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res 44: 5914–5920PubMedGoogle Scholar
  148. Schwyzer M, Hill RL (1977) Porcine A blood group N-acetylgalactosaminyltransferase. II. Enzymatic properties. J Biol Chem 252: 2346–2355Google Scholar
  149. Sears HF, Herlym IM, Delvillano B, Steplewski Z, Koprowski H (1988) Monoclonal antibody detection of a circulating tumor associated antigen. II. A longitudinal evaluation of patients with colorectal cancer. J Clin Immunol 2: 141–149Google Scholar
  150. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Relaps and survival with amplification of the Her-2/neu oncogen. Science 235: 177–181PubMedGoogle Scholar
  151. Tai T, Paulson JC, Cahan LD, Irie RF (1983) Ganglioside GM2 as a human tumor antigen (OFA-I-1). Proc Natl Acad Sci USA 80: 5392–5396PubMedGoogle Scholar
  152. Taniguchi M, Wakabayashi S (1984) Shared antigenic determinant expressed in various mammalian melanoma cells. GANN 75: 418–426PubMedGoogle Scholar
  153. Uhlenbruck G, Beuth HJ, Oette K, Schotten T, Ko HL, Rozkowski K, Roskowski W, Lütticken R, Pulverer R (1986) Lektine and Organotropie der Metastasierung. Dtsch 111: 991–995Google Scholar
  154. Vierbuchen M (1987) Lektinhistochemie — ein neues diagnostisches Prinzip in der Biologie and Pathologie, Verh Dtsch Ges Path 71: 492–502Google Scholar
  155. Vierbuchen M, Schröder S, Uhlenbruck G, Ortmann M, Fischer R (1989) CA 50 and CA 19–9 antigen expression in normal, hyperplastic, and neoplastic thyroid tissue. Lab Invest 60: 726–732PubMedGoogle Scholar
  156. Vierbuchen M (1991) Lectin Receptors. Current Topics in Pathology, Vol 83, Cell Receptor. Seifert G (ed) Springer 1991, pp 271–361Google Scholar
  157. Watkins MW, Morgan WTJ (1952) Neutralization of the anti H agglutinin in eel serum by simple sugars. Nature 169: 825PubMedGoogle Scholar
  158. Watkins MW, Morgan WTJ (1955) Inhibition by simple sugars of enzymes which decompose the blood group substances. Nature 175: 676–677PubMedGoogle Scholar
  159. Watkins WM (1980) Biochemistry and genetics of the ABO, Lewis, and P blood group system; in Harris, Hirschborn, Advances in Human Genetics, vol 10. Plenum Press, pp 1–136Google Scholar
  160. Wiels J, Fellous M, Tursz (1981) Monoclonal antibody against a Burkitt Lymphoma-associated antigen. Proc Natl Acad Sci 78:6485–6488Google Scholar
  161. Yeh MY, Hellström I, Abe H, Hakomori S, Hellström KE (1982) A cell surface antigen which is present in the ganglioside fraction and chared by human melanomas. Int J Cancer 29: 269–275PubMedGoogle Scholar
  162. Yoda Y, Ishibashi, Makita A (1980) Iosalation, characterization and biosynthesis of Forssman antigen in human lung carcinoma. J Biochem 88: 1881–1890Google Scholar
  163. Yogeeswaran G (1980) Surface glycolipid and glycoprotein antigens. In: Sell S (ed) Cancer Markers: Diagnostic and Developmental Significance. Clifton Nj Humana, pp 371–401.Google Scholar
  164. 1.
    Atkinson BF, Ernst CS, Herlyn M, Steplewski Z, Sears HF, Koprowski H (1982) Gastrointestinal cancer-associated antigen in immunoperoxidase assay. Cancer Res 42: 4820–4823PubMedGoogle Scholar
  165. 2.
    Brümmendorf T, Anderer FA, Staab HJ, Hornung A, Kieninger G (1985) Carcinoembryonales Antigen: Diagnose der Tumorprogression bei gastrointestinalen Tumoren. Dtsch med Wschr 110: 1963–1068Google Scholar
  166. 3.
    Fischbach W, Kiel HJ (1987) Follow-up of moderately elevated serum CEA in “healthy patients”. Cancer Detect Prey 10: 109–112Google Scholar
  167. 4.
    Fischbach W, Mössner J (1987) Do size, histology or cytology of colorectal adenoma and their removal influence serum CEA? Dis Colon Rectum 30: 595–599PubMedGoogle Scholar
  168. 5.
    Fletcher RH (1986) Carcinoembryonic antigen. Ann Int Med 104: 66–73PubMedGoogle Scholar
  169. 6.
    Gupta MK, Arciaga R, Bocci L, Tubbs R, Bukowski R, Deodhar SD (1985) Measurement of a monoclonal antibody defined antigen (CA 19–9) in the sera of patients with malignant and nonmalignant diseases. Comparison with carcinoembryonic antigen. Cancer 56: 277–283Google Scholar
  170. 7.
    Herrera MA, Chu TM, Holyoke ED (1976) CEA as a prognostic and monitoring in clinically complete resection of colorectal carcinoma. Ann Surg 183: 5–9PubMedGoogle Scholar
  171. 8.
    Isaacson P, Le Vann HP (1976) The demonstration of carcinoembryonic antigen in colorectal carcinoma and colonic polyps using an immunoperoxidase technique. Cancer 38: 1348–1356PubMedGoogle Scholar
  172. 9.
    Klapdor R, Klapdor U, Bahlo M, Greten H (1984) CA 19–9 in der Diagnostik and Differentialdiagnose des exkretorischen Pankreaskarzinoms. Tumor Diag Therapie 5: 161–165Google Scholar
  173. 10.
    Martin EW, Minton JP, Carez LC (1985) CEA-directed secondlook resection of colorectal carcinoma. Ann Surg 202: 310–317PubMedGoogle Scholar
  174. 11.
    Minton JP, Hoehn JL, Gerber DM et al. (1985) Results of a 400-patient carcinoembryonic second-look colorectal cancer study. Cancer 55: 1284–1290PubMedGoogle Scholar
  175. 12.
    O’Brien MJ, Zamchek N, Burke B, Kirkham SE, Saravis CA, Gottlieb LS (1981) Immunocytochemical localization of carcinoembryonic antigen in benign and malignant colorectal tissues. Am J Clin Pathol 75: 283–290PubMedGoogle Scholar
  176. 13.
    Skinner JM, Whitehead R (1981) Tumor-associated antigens in polyps and carcinoma of the human large bowel. Cancer 47: 1241–1245PubMedGoogle Scholar
  177. 14.
    Staab HJ, Brümmendorf T, Hornung A, Anderer FA, Hieninger G (1985) The clinical validity of circulating tumor-associated antigens CEA and CA 19–9 in primary diagnosis and follow-up of patiens with gastrointestinal malignancies. Klin Wochenschr 63: 106–115.PubMedGoogle Scholar
  178. 1.
    Abdel-Nabi HH, Chan HW, Doerr R (1990) Indium labeled anti-colorectal carcinoma monoclonal antibody accumulation in non-tumored tissue in patients with colorectal carcinoma. J Nucl Med 31: 1975–1979PubMedGoogle Scholar
  179. 2.
    Baum RP, Lorenz M, Baew-Christow T, Hertel A, Hottenrott C, Encke A, Hör G (1990) Immunoscintigraphy of colorectal cancer. In: Munz DL, Emrich D (eds) Immunoscintigraphy — facts and fictions. ElsevierGoogle Scholar
  180. 3.
    Bares R (1990) Immunszintigraphie kolorektaler Tumoren: Probleme und Grenzen der Methode, Nuklearmediziner 13: 173–181Google Scholar
  181. 4.
    Becker W, Bock E, Scheele J, Wittekind Ch, Bair J, Wolf F (1991) Diagnostic value of Tc-99mAnti-CEA immunoscintigraphy in patients with liver metastases of colorectal carcinoma. IRIST Meeting Lausanne 1991Google Scholar
  182. 5.
    Becker W, Scheele J, Feistel H, Wolf F (1990) Sensitivity of anti CEA-Moab scans in recurrences and metastases of colorectal cancer depending on imaging technique and CEA-serum levels. In: Schmidt H, Chambron AE (eds) Nuclearmedicine. Schattauer, Stuttgart New York, pp 535–537Google Scholar
  183. 6.
    Britton KE, Granowska M (1987) Radioimmunoscintigraphy in tumour identification. Cancer Surveys 6: 247–267PubMedGoogle Scholar
  184. 7.
    Bunn PA, Carrasquillo JA, Keenan AM et al. (1984) Successful imaging of malignant non-Hodgkin’s lymphoma using radiolabeled monoclonal antibody. Lancet II: 1219–1221Google Scholar
  185. 8.
    Buraggi GL (1990) Immunoscintigraphy of cutaneous malignant melanoma. In: Munz DL, Emrich D (eds) Immunoscintigraphy — facts and fictions. Elsevier, pp 107–120Google Scholar
  186. 9.
    Carde P, Manil L, daCosta L et al. (1988) Hodgkin’s disease immunoscintigraphy: use of the anti-Reed-Sternberg cells H-RS-1 monoclonal antibody in 9 patients. Proc Am Soc Clin Oncol 7: 227Google Scholar
  187. 10.
    Carrassquillo JA, Bunn PA, Keenan AM et al. (1986) Radioimmunodetection of cutaneous T-cell lymphoma with In-111 T101 monoclonal antibody. N Engl J med 315: 673–680Google Scholar
  188. 11.
    Chatal JF, Peltier P, Fumoleau P (1990) Immunoscintigraphy of ovarian cancer. In: Munz DL, Emrich D (eds) Immunoscintigraphy: Facts and Fictions. Elsevier, pp 89–94Google Scholar
  189. 12.
    DeNardo S, DeNardo G, O’Grady L et al. (1990) Treatment of B-cell malignancies with J-131 Lym-1 monoclonal antibodies. Int J Cancer 3: 96–101Google Scholar
  190. 13.
    Goldenberg DA (1990) Cancer imaging with radiolabeled antibodies. Kluwer Academic Publishers, Boston Dordrecht LondonGoogle Scholar
  191. 14.
    Granowska M, Britton K: In: Chatal JF (ed) Monoclonal antibodies in immunoscintigraphy. CRC PressGoogle Scholar
  192. 15.
    Granowska M, Jass JR, Britton KE, Northover JMA (1989) A prospective study of the use of In-111-labelled monoclonal antibody against carcino-embryonic antigen in colocrectal cancer and of some biological factors affecting its uptake. Int J Colorect Dis 4: 97–108Google Scholar
  193. 16.
    Haase M (1990) Approval of monoclonal antibodies as radiopharmaceuticals in Europe. In: Munz DL, Emrich D (eds) Immunoscintigraphy: Facts and fictions. Elsevier, pp 77–85Google Scholar
  194. 17.
    Halpern SE, Abdel-Nabi H, Murray JL (1990) Radioimmunoimaging. Quo vadis? Toward the imaging of tumor. J Nucl med 31: 1436–1438PubMedGoogle Scholar
  195. 18.
    Homeff G, Becker W, Wolf F, Kalden JR, Burmester GR (1991) Humane Anti-Mausglobulin-Antikörper als Störfaktoren der TSHBestimmung. Klin Wochenschr (in press)Google Scholar
  196. 19.
    Jackson GDF, Walker PG, Schiff JM, Barrington PJ, Fisher NM, Underdown BJ (1985) A role for the spleen for the appearance of IgM in the bile of rats injected intavenously with horse erythrocytes. J Immunol 135: 152PubMedGoogle Scholar
  197. 20.
    Jain RK (1988) Determinants of tumor blood flow: A review. Cancer Res 48: 2641–2658PubMedGoogle Scholar
  198. 21.
    Larson SM (1991) Biological characterization of melanoma tumors by antigen-specific targeting of radiolabeled antitumor antibodies. J Nucl med 32: 287–291PubMedGoogle Scholar
  199. 22.
    Lenhard R, Order S, Spunberg J et al. (1985) Isotopic immunoglobulin: A new systematic therapy for advanced Hodgkin’s disease. J Clin Oncol 3: 1296–1300PubMedGoogle Scholar
  200. 23.
    Link M, Bindl J, Meeker T et al. (1986) A unique antigen on mature B cells defined by a monoclonal antibody. J Immunology 137: 3013–3018Google Scholar
  201. 24.
    Natali PG, Giacomini P, Burragi GL, Cavaliere L, Bigotti A, Callegaro L, Ferrone S (1984) Serological and binding characteristics of a monoclonal antibody (MoAb) to a human high molecular weight-melanoma associated antigen (HMW-MAA) for tumor imaging. In: Giraldo G, Beth E, Castello G, Giordano GG, Zarilli D (eds) From oncogenes to tumor antigens. Elsevier, Amsterdam, pp 127–134Google Scholar
  202. 25.
    Perkins AC, Powell MC, Wastie ME, Scott IV, Hitchcock A, Worthington BS, Symonds EM (1990) A prospective evaluation of 0C125 and magnetic resonance imaging in patients with ovarian carcinoma. Eur J Nucl Med 16: 311–316PubMedGoogle Scholar
  203. 26.
    Pfreudshuh M, Mommertz E, Meissner M et al. (1988) Hodgkin and Reed-Sternberg cell associated monoclonal antibodies HRS-1 and HRS-2 react with activated cells of lymphoid and monocytoid origin. Cancer Res 8: 217–224Google Scholar
  204. 27.
    Press OW, Eary JF, Badger CC (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (andi-CD 37) antibody. J Clin Oncol 7: 1027–1038PubMedGoogle Scholar
  205. 28.
    Ronay G, Jäger W, Weiss K, Feistel H, Wolf F, Tulusan AH, Lang N (1990) Immunohistochemical identification of CAl25 and the F(ab’)2 fragments of the murine monoclonl antibody 0C125 in ovarian cancer tissue. Br J Cancer 62, supp1: 67–69Google Scholar
  206. 29.
    Sands H, Jones PL (1990) Physiology of monoclonal antibody accretion by tumors. In: Goldenberg DM (ed) Cancer imaging with radiolabeled antibodies. Kluwer Academic Publishers, Boston Dordrecht London, pp 97–122Google Scholar
  207. 30.
    Schwarz A, Steinsträsser A (1987) A novel approach to Tc-99m labelled monoclonal antibodies. J Nucl med 28: 721Google Scholar
  208. 31.
    Siccardi AG, Buraggi GL, Natali PG, Scassellati GA, Viale G, Ferrone S and the European multicentre study group (1990) European multicenter study on melanoma immunoscintigraphy by means of Tc-99m-labelled monoclonal antibody fragments. Eur J Nucl med 16: 317–323PubMedGoogle Scholar
  209. 32.
    Taylor-Papadimitriou J, Petersen JA, Arklie J, Burchell J, Ceriani RC, Bodmer WR (1981) Monoclonal antibodies to epithelium specific components of the human milk fat globule membrane production and reaction with cells in culture. Int J Cancer 28: 17–21PubMedGoogle Scholar
  210. 33.
    Vriesendorp HM, Herpst JM, Leichner PK, Klein JL, Order S (1989) Polyclonal 90-Yttrium labeled antiferritin for refractory Hodgkin’s disease. Int J Rad Oncol 17: 815–821Google Scholar
  211. 34.
    Wilson BS et al. (1982) Human melanoma associated antigens identified with monoclonal antibodies: structural profile and potential usefulness in immunodiagnosis and immunotherapy. Ric Clin Lab XII (4): 517Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • W. Fischbach
    • 10
  • G. Klöppel
    • 1
  • Th. Kirchner
    • 2
  • C. Wagener
    • 3
  • W. Becker
    • 4
  • F. Wolf
    • 4
  • W. Fischbach
    • 5
  • M. Vierbuchen
    • 6
  • A. Larena
    • 6
  • F-G. Hanisch
    • 7
  • G. Uhlenbruck
    • 7
  • A. Knuth
    • 8
  • R. Klingel
    • 9
  • R. Moll
    • 8
  • W. Dippold
    • 8
  • K.-H. Büschenfelde
    • 8
  1. 1.Department of Pathology, Academic Hospital JetteFree University of BrusselsBelgium, BrüsselDeutschland
  2. 2.Pathologisches InstitutUniversität WürzburgDeutschland
  3. 3.Abteilung für Klinische Chemie, Medizinische KlinikUniversitätskrankenhaus EppendorfHamburgDeutschland
  4. 4.Nuklearmedizinische Klinik mit PoliklinikUniversität ErlangenNürnbergDeutschland
  5. 5.Medizinische PoliklinikUniversität WürzburgDeutschland
  6. 6.Pathologisches InstitutUniversität KölnDeutschland
  7. 7.Institut für ImmunbiologieUniversität KölnDeutschland
  8. 8.Medizinische Klinik PoliklinikUniversität MainzDeutschland
  9. 9.Pathologisch Anatomisches InstitutUniversität MainzDeutschland
  10. 10.WürzburgDeutschland

Personalised recommendations