Electronic Properties of Nonconjugated Polymers: 1,4-Polybutadiene and 1,4-Polyisoprene

  • Z. Shuai
  • J. L. Brédas
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 107)


We present geometry optimizations and band-structure calculations on the cis and trans forms of 1,4-polybutadiene and 1,4-polyisoprene. We show that the polymers with skewed conformations possess a width for the highest occupied valence band in the range 0.79-0.93 eV. Holes in that band should therefore present a significant intrachain mobility. The solid-state ionization potentials are found to be too large to allow for oxidation by iodine and formation of ethylene radical cations. If no polymer isomerization occurs, the previously proposed p-type conduction mechanism could thus be based on the mobility of iodonium π-complexes with somewhat delocalized double bonds or on the counter-ion poly iodide chains.


Ionization Potential Poly Thiophene Isomerization Yielding Valence Electronic Structure Localize Double Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handbook of Conducting Polymers; T.A. Skotheim, Ed:; M. Dekker: New York, (1986)Google Scholar
  2. 2.
    Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics: J.L. Brédas, R.E. Chance, Eds:; Kluwer: Dordrecht, (1990); NATO-ARW Series Vol. E182 Google Scholar
  3. 3.
    See, for instance, the Proceedings of the International Conference on the Science and Technology of Synthetic Metals: Synth. Met. 17–19 (1987); 27 (1988); 28–29 (1989); (1991), in pressGoogle Scholar
  4. 4.
    M. Thakur: Macromclecules 21, 661 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    M. Thakur, B.S. Elman: J. Chem. Phys. 90, 2042 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    A.L. Cholli, M. Thakur: J. Chem. Phys. 91, 7912 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    P. Calvert: Nature 333, 296 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Shang, S. Pramanick, B.S. Hudson: Macromolecules 23, 1886 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Suh, O.E. Wnek: Polymer Preprints 31, 410 (1990)Google Scholar
  10. 10.
    See, for instance, Chemical amp; Engineering News, (1990) (May 7), pp. 53–55Google Scholar
  11. 11.
    M.J.S. Dewar, W. Thiel: J. Am. Chem. Soc. 99, 4899 (1977)CrossRefGoogle Scholar
  12. 12.
    H. Tadokoro: Structure of Crystalline Polymers; Wiley: New York, (1979)Google Scholar
  13. 13.
    J.L. Bredas, R.R. Chance, R. Silbey, G, Nicolas, Ph. Durand: J. Chem. Phys. 75, 255 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    See, for instance: J.L. Brdas, in Ref. 1, Vol. 1, pp. 859–913Google Scholar
  15. 15.
    See, for instance: R.H. Baughman, J.L. Bredas, R.R. Chance, R.L. Elsenbaumer, L.W. Shacklette: Chem. Rev. 82, 209 (1982)Google Scholar
  16. 16.
    A.J. Heeger: in Highly Conducting One-Dimensional Solids; J.T. Devreese, R.P. Evrar, V.E. van Dören, Eds.; Plenum: New York, (1979); pp. 69–145Google Scholar
  17. 17.
    H.-C. zur Loye, B.J. Heyen, H.O. Marcy, D.C. DeGroot, C.R. Kannewurf, and D.F. Shriver: Chem. Mater 2, 603 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Z. Shuai
    • 1
  • J. L. Brédas
    • 1
  1. 1.Service de Chimie des Matériaux NouveauxUniversité de Mons-HainautMonsBelgium

Personalised recommendations