The Pre-Alpine Evolution of the Continental Crust of the Central Alps — An Overview

  • D. Gebauer


As for the European Variscides, the continental crust of the Central Alps is part of Gondwana. Geochronologically, this is manifested by a characteristic sequence of geological events presently found in the Brasilian shield or in Africa. However, in contrast to the latter shield areas, the Central Alpine and Variscan crusts consist, in their present erosion level, almost exclusively of recycled Gondwana crust, being geochronologically distinct from continental crust of the other supercontinent, Laurasia. Major Precambrian crust-forming events, as detected by ion-probe dating of detrital zircons from a paragneiss of the Gotthard Massif and a recent river sand from the Po delta, date back to 3.43 Ga and are concentrated around 2.6, 2.1, 1.0 and 0.65 Ga. Precambrian igneous rocks are, as notorious for the European Variscides, very rare in the Central Alps and geochronologically difficult to date. Often they are mafic rocks extracted from a suboceanic mantle, as for example 870-Ma-old gabbros of the Gotthard Massif, metamorphosed to eclogites in the Ordovician (468 Ma). Similar rocks are known from the Berisal complex (Simplon area), the Siviez-Mischabel unit (Valais) and from the southern part of the Penninic nappes. However, their ‘ages’ of ca. 1 Ga still need to be substantiated by further geochronological work, which is also the case for intermediate and felsic orthogneisses of the Upper Austro-Alpine Silvretta nappe.

There are a number of mantle melting events detected in mafic and ultramafic rocks of the Gotthard Massif, the southern steep belt (Lepontine area) and the Ivrea zone, which are probably related to oceanization and continental rift processes. They range from 3.17, 2.67, 2.45, 1.72, 1.27 Ga to Pan-African ages (650 and 670 Ma).

The post-Pan-African and pre-Ordovician evolution probably starts with rifting and oceanization processes in the course of which many precursors of the widespread metasediments were deposited. For the Central and Southern Alps this is documented by ages of ca. 600 Ma for the youngest detrital zircons of paragneisses metamorphosed first during the Ordovician. Rb-Sr whole-rock systematics of further paragneisses corroborate this finding. However, opposite to other parts of the European Variscides, Cambrian or Cambro-Ordovician formation of oceanic mafic rocks has been so far rarely dated unambiguously.

Ordovician orogenic activities are widely documented in the Central Alps. They include subduction zone HP-metamorphism at ca. 470 Ma (e. g. Gotthard Massif), regional amphibolite facies tectono-metamorphism and widespread granitic magmatism in the range of ca. 440–460 Ma followed by rapid uplift (conglomerates!). Evidence for Ordovician back-arc opening with formation of N-type MORBs exists for the external Aiguilles Rouge Massif.

Similar to the post-Pan-African evolution, postOrdovician-Silurian opening phases are difficult to detect and have only been described so far for the external Belledonne Massif. The Carboniferous evolution with rarely detected HP metamorphism is documented, however, by numerous ages. These are usually associated with regional amphibolite facies metamorphism and mainly granitic subduction and collision zone magmatism.

Post-Carboniferous rifting events are best documented in the southern Alpine Ivrea zone, probably because of the unique exposure of rocks from the lower continental crust. They are documented by magmatic/metamorphic activities which probably were caused by successive underplating of mainly mafic magmas continuing at least into the Middle Jurrassic.


Continental Crust Detrital Zircon Contrib Mineral Petrol Ivrea Zone Zircon Xenocryst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allègre CJ, Rousseau D (1984) The growth of the continents through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett 67: 19–34CrossRefGoogle Scholar
  2. Arnold A (1970) On the history of the Gotthard Massif (Cen- tral Alps, Switzerland). Abstr Eclogol Geol Helv 63: 29–30Google Scholar
  3. Boriani A, Origoni Giobbi E, Del Moro A (1981) Composition, level of intrusion and age of the “Serie dei Laghi” orthogneisses (northern Italy — Ticino, Switzerland ). Rend Soc Ital Mineral Petrol 38: 191–205Google Scholar
  4. Bossart PJ, Meier M, Oberli F, Steiger RH (1986) Morphology versus U-Pb systematics in zircon: a high-resolution isotopic study of a zircon population from a Variscan dike in the Central Alps. Earth Planet Sci Lett 78: 339–354CrossRefGoogle Scholar
  5. van Breemen O, Aftalion M, Bowes RD, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edin 73: 89–108CrossRefGoogle Scholar
  6. Buletti M (1985) Petrographisch-geochemische Untersuchungen im Luganer Porphyrgebiet. Ph D Thesis, University Bern, 157 ppGoogle Scholar
  7. Cahen L, Snelling NJ, Delhal J, Vail JR (1984) The geochronology and evolution of Africa. Clarendon Press, OxfordGoogle Scholar
  8. Chauvel C, Dupre B, Jenner GA (1985) The Sm-Nd age of Kambalda volcanics is 500 Ma too old! Earth Planet Sci Lett 74: 315–324CrossRefGoogle Scholar
  9. Compston W, Williams IS, Campbell IH, Gresham JJ (1985/86) Zircons xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. Earth Planet Sci Lett 76: 299–311Google Scholar
  10. Compston W, Kinny PD, Williams IS, Foster JJ (1986) The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth Planet Sci Lett 80: 71–81CrossRefGoogle Scholar
  11. Cumming GL, Koppel V, Ferrario A (1987) A lead isotope study of the northeastern Ivrea Zone and the adjoining Ceneri Zone (N-Italy): evidence for a contaminated subcontinental mantle. Contrib Mineral Petrol 97: 19–30CrossRefGoogle Scholar
  12. Del Moro A, Notarpietro A (1987) Rb-Sr geochemistry of some Hercynian granitoids overprinted by eo-Alpine metamorphism in the Upper Valtellina, Central Alps. Schweiz Mineral Petrogr Mitt 67: 295–306Google Scholar
  13. DePaolo DJ (1981) A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsula Ranges, California. J Geophys Res 86: 10470–10488CrossRefGoogle Scholar
  14. Ferrario A, Garuti G, Sighinolfi GP (1982) Platinum and palladium in the Ivrea-Verbano basic complex, Western Alps, Italy. Econ Geol 77: 1548–1555CrossRefGoogle Scholar
  15. Flisch M (1987) Geologische, petrographische und isotopengeologische Untersuchungen an Gesteinen des Silvréttakristallins, Teil 1. Die Hebungsgeschichte der oberostalpinen Silvretta-Decke seit der mittleren Kreide, Teil 2. Diss, Universität BernGoogle Scholar
  16. Frasi G (1970) Zur Metamorphose und Abgrenzung der Moravischen Zone im niederösterreichischen Waldviertel. Nachr. Deutsch. Geol. Ges. 2: 55–61Google Scholar
  17. Gebauer D (1975) Rb-Sr Gesamtgesteins-und Mineralsysteme sowie U-Pb Systeme in Zirkonen während der progressiven Gesteinsmetamorphose. Diss, ETH Zürich, 137 ppGoogle Scholar
  18. Gebauer D (1990a) Isotopic systems — geochronology of eclogites. In: Carswell DA (ed) Eclogite facies rocks. Blackie, New York, pp 141–159Google Scholar
  19. Gebauer D (1990b) Precambrian development of the continental crust of the European Hercynides. In: Freeman R, Mueller St (eds) Proc 6th EGT Worksh Eur Sci Found, pp 23–28Google Scholar
  20. Gebauer D (1991) Two Palaeozoic high-pressure events in a garnet-peridotite of northern Bohemia (CSFR). Abstr for 2nd Int Eclogite field symposium, Spain 1991. Terra Abstr Suppl 6 to Terra Nova 3: 5Google Scholar
  21. Gebauer D, Grünenfelder M (1974) Rb-Sr whole-rock dating of late diagenetic to anchimetamorphic, Palaeozoic sediments in southern France ( Montagne Noire ). Contrib Mineral Petrol 47: 113–130CrossRefGoogle Scholar
  22. Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian Belt of Europe based on age and origin of high-grade and high-pressure mafic and ultramafic rocks. Extended Abstract. 5th Int Conf on Geochronology and isotope geology. Nikko, Japan, pp 111–112Google Scholar
  23. Gebauer D, Quadt A (1991) Geochronological evidence for tectonic contacts between Caledonian meta-eclogite of the Gotthard Massif and its country-rocks (Central Alps, Switzerland). Abstr for 2nd Int Eclogite field symposium, Spain 1991. Terra Abstr Suppl 6 to Terra Nova 3: 6Google Scholar
  24. Gebauer D, Williams IS (1990) Crust and mantle evolution of the European Hercynides. Abstr ICOG 7 Canberra. Geol Soc Aust 27: 38Google Scholar
  25. Gebauer D, Quadt A, Compston W, Williams IS, Grünenfelder M (1988) Archean zircons in a retrograded, Caledonian eclogite of the Gotthard Massif ( Central Alps, Switzerland). Schweiz Mineral Petrogr Mitt 68: 485–490Google Scholar
  26. Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archean based on conventional and ion-micro-probe dating of up to 3.84 b. y. old detrital zircons. Tectonophysics 157: 81–96CrossRefGoogle Scholar
  27. Gebauer D, Schmid R, Quadt A, Ulmer P (1992a) Oligocene, pyroxene-rich metadiorites of different ages from the Ivrea zone and their geodynamic significance. Schweiz Mineral Petrogr Mitt 71: 1Google Scholar
  28. Gebauer D, Grünenfelder M, Tilton GR, Trommsdorff V, Schmid S (1992b) The geodynamic evolution of garnet-peridotites, garnet-pyroxenites and eclogites of Alpe Arami and Cima di Gagnone ( Central Alps) from Early Proterozoic to Oligocene. Schweiz Mineral Petrogr Mitt 71: 1Google Scholar
  29. Göpel C (1981) Trace element abundances and 87Sr/86Sr-, 143Nd/144Nd ratios of Permian flood basalts, SW-Germany. Terra Cognita, Spec Issue Spring 1981: 80Google Scholar
  30. Grauert B (1966) Rb-Sr age determinations on orthogneisses of the Silvretta (Switzerland). Earth Planet Sci Lett 1: 139–147CrossRefGoogle Scholar
  31. Grauert B (1969) Die Entwicklungsgeschichte des SilvrettaKristallins auf Grund radiometrischer Altersbestimmungen. Diss, Univ Bern, 168 ppGoogle Scholar
  32. Grauert B (1981) Das Alter der Schlingentektonik im SilvrettaOetztalkristallin aufgrund radiometrischer Altersbestimmungen. Fortschr Mineral 59, Beiheft 1: 54–56Google Scholar
  33. Grauert B, Arnold A (1968) Deutung diskordanter Zirkonalter der Silvrettadecke and des Gotthardmassivs ( Schweizer Alpen ). Contrib Mineral Petrol 20: 34–56CrossRefGoogle Scholar
  34. Grünenfelder M, Hofmänner F, Grögler N (1964) Heterogenität akzessorischer Zirkone and die petrographische Deutung ihrer Uran/Blei-Zerfallsalter, II, Präkambrische Zirkonbildung im Gotthardmassiv. Schweizer Mineral Petro-gr Mitt 44 (2): 543–558Google Scholar
  35. Grünenfelder M, Williams IS, Compston W (1984) Use of the ion-microprobe in deciphering complex U-Th-Pb systems in zircons from the pre-Alpine basement, Switzerland. Terra Cognita, Spec Issue ECOG VIII: 26–27Google Scholar
  36. Guerrot C, Peucat JJ, Capdevila R, Dosso L (1989) Archean protoliths within Early Proterozoic granulitic crust of the West European Hercynian Belt: possible relics of the West African craton. Geology 17: 241–244CrossRefGoogle Scholar
  37. Gulson BL (1973) Age relations in the Bergell region of the south-east Swiss Alps: with some geochronological comparisons. Eclogal Geol Helv 66 (2): 293–313Google Scholar
  38. Gulson BL, Rutishauser H (1976) Granitization and U-Pb studies of zircons in the Lauterbrunnen Crystalline Complex. Geochem J 10: 13–23CrossRefGoogle Scholar
  39. Hänny R, Grauert B, Soptrajanova G (1975) Palaeozoic migmatites affected by high-grade Tertiary metamorphism in the Central Alps ( Valle Bodengo, Italy). Contrib Mineral Petrol 51: 173–196CrossRefGoogle Scholar
  40. Hunziker JC (1974) Rb-Sr and K-Ar age determination and the alpine tectonic history of the Western Alps. Mem Ist Geol Mineral Univ Padova 31: 1–54Google Scholar
  41. Hunziker JC, Zingg A (1980) Lower Palaeozoic amphibolite to granulite metamorphism in the Ivrea Zone (Southern Alps, N-Italy). Schweiz Mineral Petrogr Mitt 60, 2 /3: 181–214Google Scholar
  42. Iizumi S, Meier M, Oberli F, Steiger RH (1986) Petrogenetics by morphology/U-Pb single zircon study. Terra Cognita 6: 152Google Scholar
  43. Jäger E (1962) Rb-Sr age determination on micas and total rocks from the Alps. J Geophys Res 67 (13): 5293–5306CrossRefGoogle Scholar
  44. Jäger E (1977) The evolution of the Central and Western European continent. In: Vidal Ph (ed) Limitation isotopique à l’age de l’évolution de la croute continentale en Europe moyenne et occidentale. In: Cogné J (ed) La chaine varisque d’Europe moyenne et occidentale. Colloq Int Cent Natl Rech Sci, Rennes, 243, pp 227–239Google Scholar
  45. Jäger E (1979) The Rb-Sr method. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 13–26CrossRefGoogle Scholar
  46. Kinny PD (1986) Ma zircons from tonalitic Amitsoq gneiss in the Godthaab district of southern West Greenland. Earth Planet Sci Lett 79: 337–347Google Scholar
  47. Köppel V (1974) Isotopic U-Pb ages of monazites and zircons from the crustmantle transition and adjacent units of the Ivrea and Ceneri Zones (Southern Alps, Italy). Contrib Mineral Petrol 43: 55–70CrossRefGoogle Scholar
  48. Köppel V, Grünenfelder M (1971) A study of inherited and newly formed zircons from paragneisses and granitised sediments of the Strona-Ceneri-Zone (Southern Alps). Schweiz Mineral Petrogr Mitt 51, 2 /3: 385–409Google Scholar
  49. Köppel V, Grünenfelder W (1978) Monazite and zircon U-Pb ages from the Ivrea and Ceneri zones. Mem Ist Sci Geol Univ Padova 33: 257Google Scholar
  50. Köppel V, Günthert A, Grünenfelder M (1980) Patterns of U-Pb zircon and monazite ages in polymetamorphic units of the Swiss Central Alps. Schweiz Mineral Petrogr Mitt 61: 97–119Google Scholar
  51. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99: 257–266CrossRefGoogle Scholar
  52. Leutwein F, Power G, Roach P, Sonet J (1973) Quelques resultats géochronologiques obtenus sur des roches d’age précambrien du Cotentin. C R Acad Sci Paris 276: 2121–2124Google Scholar
  53. Mattauer M, Brunel M, Matte Ph (1988) Failles normales ductile et grands chevauchements. Une nouvelle analogie entre l’Himalaya et la chaîne hercynienne du Massif Central français. C R Acad Sci Paris 306, 2: 671–676Google Scholar
  54. Matte Ph (1986) La chaîne varisque parmi les chaînes paléozoiques péri atlantiques, modèle d’evolution et position des grands blocs continentaux au Permo-Carbonifère. Bull Soc Geol Fr 8 (1): 9–24Google Scholar
  55. McDowell FW, Schmid R (1968) Potassium-argon ages from the Valle d’Ossola section of the Ivrea-Verbano zone. Schweiz Mineral Petrogr Mitt 48: 205–210Google Scholar
  56. Ménot RP (1988) The geology of the Belledonne massif: an overview (external crystalline massifs of the Western Alps). Schweiz Mineral Petrogr Mitt 68 (3): 531–542Google Scholar
  57. Ménot RP, Peucat JJ, Paquette JL (1988) Les associations magmatiques acide-basique palèozoiques et les complexes leptyno-amphiboliques: les corrélations hasardeuses. Exemples du massif de Belledonne (Alpes occidentales) Bull Soc Geol Fr 8 (6): 917–926Google Scholar
  58. Mercolli I, Oberhänsli R (1988) Variscan tectonic evolution in the Central Alps: a working hypothesis. Schweiz Mineral Petrogr Mitt 68: 491–500Google Scholar
  59. Nägler ThF, Gebauer D, Schäfer H-J (1989) Nr-, Sr-and Pb-isotope geochemistry of two pre-Permian sedimentary profiles from the Spanish Meseta: evidence of both crustal recycling and crustal growth. Terra Abstr 1: 336Google Scholar
  60. Neubauer F, Frisch W, Hansen BT (1987) New data on the evolution of the austroalpine basement: a U/Pb zircon study. Terra Cognita 7: 96Google Scholar
  61. Oberli F, Sommerauer J, Steiger RH (1981) U-(Th)-Pb systematics and mineralogy of single crystals and concentrates of accessory minerals from the Cacciola granite, central Gotthard massif, Switzerland. Schweiz Mineral Petrogr Mitt 61: 323–348Google Scholar
  62. O’Nions RK, Hamilton PJ, Hooker PJ (1983) A Nd isotopes investigation of sediments related to crustal development in the British Isles. Earth Planet Sci Lett 63: 229–240CrossRefGoogle Scholar
  63. Nunes PD, Steiger RH (1974) A U-Pb zircon, Rb-Sr and U-ThPb whole-rock study of a polymetamorphic terrane in the Central Alps, Switzerland. Contrib Mineral Pet 47: 255–280CrossRefGoogle Scholar
  64. Paquette JL, Marchand J, Peucat JJ (1984) Absence de tectonique cadomienne dans le complexe de Champtoceaux (Bretagne méridionale)? Comparaison des systèmes Rb-Sr et U-Pb d’un métagranite. Bull Soc Géol Fr 7, XXVI, 5: 907–912Google Scholar
  65. Paquette JL, Menot RP, Peucat JJ (1989) REE, Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): evidence for crustal contamination. Earth Planet Sci Lett 96, 1 /2: 181–198CrossRefGoogle Scholar
  66. Peucat J-J, Vidal Ph, Godard G, Postaire B (1982) Precambrian U-Pb zircon ages in eclogites and garnet-pyroxenites from South Brittany (France) an old oceanic crust in the West European Hercynian belt? Earth Planet Sci Lett 60: 70–78CrossRefGoogle Scholar
  67. Pidgeon RT, Köppel V, Grünenfelder M (1970) U-Pb isotopic relationships in zircon suites from a para-and orthogneiss from the Ceneri Zone, southern Switzerland. Contrib Mineral Petrol 26: 1–11CrossRefGoogle Scholar
  68. Pin C (1986) Datation U-Pb sur zircons à 285 M. a. du complexe gabbro-dioritique du Val Sesia — Val Mastallone et âge tardi-hercynien du metamorphisme granulitique de la zone Ivrea-Verbano (Italie). C R Acad Sci Paris 303,11, 9: 827–830Google Scholar
  69. Pin C (1989) Essai sur la chronologie et l’évolution géodynamique de la chaine hercynienne d’Europe. Thèse, Université Blaise Pascal (Clermont-Ferrand II), 470 ppGoogle Scholar
  70. Pin C, Sills JD (1986) Petrogenesis of layered gabbros and ultramafic rocks from Val Sesia, the Ivrea Zone, NW Italy: trace element and isotope geochemistry. In: Dawson JB, Hall J, Wedepohl KH (eds) The nature of the lower continental crust. Geol Soc Spec Publ 24: 231–249Google Scholar
  71. Polvé M (1983) Les isotopes du Nd et du Sr dans les Lherzolite orogéniques: contribution à la détermination de la structure et de la dynamique du manteau supérieur. Thèse, Université de ParisGoogle Scholar
  72. Postaire B (1982) Systématique Pb commun et U-Pb sur zircon. Application aux roches de haut grade métamorphique im-pliquées dans la chaîne hercynienne (Europe de l’ouest) et aux granulites de Laponie (Finlande). Thèse, Université de Rennes, 1–71Google Scholar
  73. Rivalenti G, Garuti G, Rossi A (1975) The origin of the Ivrea-Verbano basic formation (western Italian Alps). Whole-rock geochemistry. Boll Soc Geol Ital 94: 1149–1186Google Scholar
  74. Rivalenti G, Garuti G, Rossi A, Siena F, Sinigoi S (1980) Existence of different peridotite types and of layered igneous complex in the Ivrea Zone of the Western Alps. J Pet 22: 127–153Google Scholar
  75. Rivalenti G, Garuti G, Rossi A, Siena F, Finigoi S (1981) Chromian spinel in the Ivrea-Verbano layered igneous complex, Western Alps, Italy. Tschermaks Mineral Petrogr Mitt 29: 33–53CrossRefGoogle Scholar
  76. Rivalenti G, Rossi A, Siena F, Sinigoi S (1984) The layered series of the Ivrea-Verbano igneous complex, Western Alps, Italy. Tschermaks Mineral Petrogr Mitt 33: 77–99CrossRefGoogle Scholar
  77. Rogers G, Dempster TJ, Bluck BJ, Tanner PWG (1989) The implications of a high-precision U-Pb age from the Ben Vuirich granite for the evolution of the Scottish Dalradian. Terra Abstr 1: 11Google Scholar
  78. Schäfer HJ, Gebauer D, Nägler ThF (1989) Pan-African and Caledonian ages in the Ossa Morena Zone ( SW Spain ): A U-Pb zircon-and Sm-Nd study. Terra Abstr: 350–351Google Scholar
  79. Schaltegger U (1986) Voralpine und alpine Mineralbildung in der Gneiszone von Erstfeld (Sustenpass, Aarmassiv); der Mechanismus der K-Ar und Rb-Sr Verjüngung alpin umgewandelter Biotite. Schweiz Mineral Petrogr Mitt 66: 395–412Google Scholar
  80. Schaltegger U (1989) Geochemische und isotopengeochemische Untersuchungen am zentralen Aaregranit und seinen assoziierten Gesteinen zwischen Aare und Reuss (Aarmassiv, Schweiz). Thesis, University BernGoogle Scholar
  81. Schenk-Wenger K, Stille P (1989) Geochemical and isotope evidence for an extensive Proterozoic ophiolite-suite in the Central Alps ( Switzerland ). Abstr Beih Eur J Mineral 1: 160Google Scholar
  82. Schmid R, Wood BJ (1976) Phase relationships in granulitic metapelites from the Ivrea-Verbano zone ( Northern Italy ). Contrib Mineral Petrol 54: 255–279CrossRefGoogle Scholar
  83. Schmidt K, Söllner F (1982) Proposals for the Geodynamic Interpretation of the “Caledonian Event” in central and southern Europe with special reference to the Eastern Alps. In: Sassi F und Varga A. IGCP 5, Newsletter 4: 82–93Google Scholar
  84. Sills JD, Tarney J (1984) Petrogenesis and tectonic significance of amphibolites interlayered with metasedimentary gneisses in the Ivrea Zone, Southern Alps, northwest Italy. Tectonophysics 107: 187–206CrossRefGoogle Scholar
  85. Söllner F, Hansen BT (1987) “Pan-afrikanisches” und “kaledonisches” Ereignis im Oetztal-Kristallin der Ostalpen: Rb-Sr-und U-Pb-Altersbestimmungen an Migmatiten und Metamorphiten. Jahb Geol Bundesanst 130 (4): 529–569Google Scholar
  86. Stähle V, Frenzel G, Kober B, Michard A, Puchelt H, Schneider W (1990) Zircon syenite pegmatite in the Finero peridotite (Ivrea zone): evidence for a syenite from a mantle source. Earth Planet Sci Lett 101: 196–205CrossRefGoogle Scholar
  87. Steiger RH, Jäger E (1977) Subcommission on Geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36: 359–362CrossRefGoogle Scholar
  88. Stille P (1980) On the genesis of the amphibolites and in the Berisal Complex (Simplon; Italy-Switzerland). Mem Sci Geol, Padua 34: 205–246Google Scholar
  89. Stille P, Buletti M (1987) Nd-Sr isotopic characteristics of the Lugano volcanic rocks and constraints on the continental crust formation of the South Alpine domain (N-ItalySwitzerland) Contrib Mineral Petrol 96: 140–150CrossRefGoogle Scholar
  90. Stille P, Tatsumoto M (1985) Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Penninic nappe system of the Alps: evidence from Sm-Nd isotopes and rare earth elements. Contrib Mineral Petrol 89: 184–192CrossRefGoogle Scholar
  91. Teufel S, Schärer U (1989) Unravelling the age of high-grade metamorphism of the Ivrea Zone: a monazite single-grain and small fraction study. Terra Abstr 1: 350Google Scholar
  92. Vidal Ph (1977) Limitation isotopique à l’age de l’évolution de la croute continentale en Europe moyenne et occidentale. In: Cogné J (ed) La chaine varisque d’Europe moyenne et occidentale. Colloq Int Cent Natl Rech Sci, Rennes, 234: 129–141Google Scholar
  93. Vidal Ph, Auvray B, Charlot R, Cogné J (1981) Precadomian relics in the Armorican Massif: their age and role in the evolution of the Western and Central European Cadomian — Hercynian belt. Precambrian Res 14: 1–20CrossRefGoogle Scholar
  94. Vocke RD, Hänny R (1984) Petrogenesis of the Sondalo — M. Serottini intrusions, Upper Valtellina, Northern Italy. Terra cognita 4: 24Google Scholar
  95. Voshage H, Hunziker JC, Hofmann AW, Zingg A (1987) A Nd and Sr isotopic study of the Ivrea zone, Southern Alps, N-Italy. Contrib Mineral Petrol 97: 31–42CrossRefGoogle Scholar
  96. Voshage H, Sinigoi S, Mazzucchelli M, Demarchi G, Rivalenti G, Hofmann AW (1988) Isotopic constraints on the origin of ultramafic and mafic dikes in the Balmuccia peridotite (Ivrea Zone) Contrib Mineral Petrol 100: 261–267CrossRefGoogle Scholar
  97. Weber W (1966) Zur Geologie zwischen Chiavenna und Mesocco. PhD Thesis, ETH ZürichGoogle Scholar
  98. Wendt JI, Kröner A, Todt W, Fiala J, Rajlich P (1989) 2 Ga zircon ages for the moldanubian basement and the age of the granulite facies metamorphism in southern Bohemia, CSSR. Terra Abstr 1: 4Google Scholar
  99. Wright JE, Shervais JW (1980) Emplacement age of the Balmuccia Lherzolite Massif, NW Italy. 26th Int Geol Congr, Paris, Résumés 2: 804Google Scholar
  100. Zingg MA (1989) Die Siviez-Mischabel Decke: Entstehung und Entwicklung eines Altkristallins und seiner Vererzungen (Wallis, Schweiz). Thesis, ETH ZürichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. Gebauer

There are no affiliations available

Personalised recommendations