Modelling of Thermally Radiating Diffusion Flames with Detailed Chemistry and Transport

  • Y. Liu
  • B. Rogg
Part of the EUROTHERM Seminars book series (EUROTHERM, volume 17)


Strained laminar counterflow-diffusion flames of CO-H2-O2-N2 mixtures in air are numerically simulated using detailed models for thermal radiation, chemistry and molecular transport. The overall model is validated by comparison of the numerical results with experimental data available in the literature. It is shown that at medium to low values of the strain rate radiation has a particularly strong impact on the flame structure.


Flame Temperature Diffusion Flame Burner Surface Flame Spread Flame Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peters N.: Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Prog. Energy Combust. Sci. 10 (1984) 319–339.Google Scholar
  2. 2.
    Sohrab S. H., Linän A., Williams F. A.: Asymptotic Theory of Diffusion Flame Extinction with Radiant Loss from the Flame Zone. Combust. Sci. and Tech. 27 (1982) 143–154.CrossRefGoogle Scholar
  3. 3.
    Müller U. C.: Der Einfluß von Strahlungsverlusten auf die thermische NO-Bildung in laminaren CO-H2-Diffusionsflammen, Diplomarbeit, RWTH Aachen (1989).Google Scholar
  4. 4.
    Drake, M. C., Blint, R. J.: Thermal NOx in Stretched Laminar Opposed-Flow Diffusion Flames with CO/H2/N2 Fuel. Combust. Flame 76 (1989) 151–167.CrossRefGoogle Scholar
  5. 5.
    Rogg B.: Response and Flamelet Structure of Stretched Premixed Methane-Air Flames. Combust. Flame 73 (1988) 45–65.CrossRefGoogle Scholar
  6. 6.
    Warnatz J.: Rate Coefficients in the C/H/O/Systems, in W. C. Gardiner, Jr. (Ed.). Combustion Chemistry, Springer, New York (1984)197–360.Google Scholar
  7. 7.
    Warnatz J.: private communication (1988).Google Scholar
  8. 8.
    Siegel R., Howell J. R.: Thermal Radiation Heat Transfer. 2nd ed., Hemisphere Publishing Corporation, New York (1981).Google Scholar
  9. 9.
    Hubbard G. L., Tien C. L.: Infrared Mean Absorption Coefficients of Luminous Flames and Smoke. Journal of Heat Transfer 100 (1978) 235–239CrossRefGoogle Scholar
  10. 10.
    Rogg B.: Numerical Analysis of Strained Premixed CH4-Air Flames with Detailed Chemistry. In Numerical and Applied Mathematics. Edited by W. F. Ames, Baltzer (1989) 159–167.Google Scholar
  11. 11.
    Rogg B.: Numerical Modelling and Computation of Reactive Stagnation-Point Flows. In Computers and Experiments in Fluid Flow. Edited by G. M. Carlomagno and C. A. Brebbia, Springer Verlag, Berlin-Heidelberg, (1989) 75–85.Google Scholar
  12. 12.
    Dixon-Lewis G., Missaghi M.: Structure and Extinction Limits of Counterflow Diffusion Flames of Hydrogen-Nitrogen Mixtures in Air. 22nd Symposium (Int.) on Comb., The Combustion Institute, Pittsburgh (1988) 1461–1470.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Y. Liu
    • 1
  • B. Rogg
    • 1
  1. 1.Dept. of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations