Combined Convective and Conductive Effects within an Upstream Flow Along a Vertical Fuel Surface

  • B. Porterie
  • R. Saurel
  • J-C. Loraud
  • M. Larini
Conference paper
Part of the EUROTHERM Seminars book series (EUROTHERM, volume 17)


A numerical model is developed to study the flame spread processes occuring when a high temperature material is placed in contact with a solid fuel. Gas phase processes including mass, momentum and heat transfer are coupled with solid phase processes, heat conduction and thermal degradation, through conditions at the interface solid-gas. For the gas phase, the unsteady two-dimensional Navier-Stokes equations are written, under Boussinesq approximation, in Stream Function Vorticity formulation. Solid phase processes are described by an energy balance equation. A semi-implicit method, taking coupling conductive-convective effects into account, is used to obtain the numerical solution.

This numerical model is tested assuming the solid product is dry or wet wood. The sensitivity of the flame structure to the moisture content and various parameters is examined.


Solid Fuel Flame Spread Flame Structure High Temperature Material Fuel Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fernandez-Pello A. C.: Flame Spread Modelling. Comb. Sc. Tech., 39 (1984) 119–134.CrossRefGoogle Scholar
  2. 2.
    Dusserre P., Otterbein M., Vermande P.: La Combustion du Bois, Contribution á la Modélisation. Proclime Tome 18, 1, janv. -fév. (1987).Google Scholar
  3. 3.
    Murty Kanury A.: Rate of Burning of Wood (A Simple Thermal Mode). Comb. Sc. Tech., 5 (1972).Google Scholar
  4. 4.
    Wai Chun Chan R., Kelbon M., Krieger B. B.: Modelling and Experimental Verification of Physical and Chemical Processes During Pyrolysis of a Large Biomass Particle. Fuel (1985).Google Scholar
  5. 5.
    Miller C. A., Ramohalli K. N. R.: A Theorical Heterogeneous Model of Wood Pyrolysis. Comb. Sc. Techn., 46 (1986).Google Scholar
  6. 6.
    Becker H. A., Phillips A. M.: Burning of Pine in Wind at 357–857 °C and 3–18 m/s: The Wave Propagation Period. Combustion and Flame, 58 (1984) 273–289.CrossRefGoogle Scholar
  7. 7.
    Mao C. P., Kodama H., Fernandez-Pello A. C.: Convective Structure of a Diffusion Flame over a Flat Combustible Surface. Combustion and Flame, 57(1984)209–236.Google Scholar
  8. 8.
    Vovelle C., Akrich R., Delbourgo R.: Comportement du Bois dans un Incendie Entropie, 87 (1979).Google Scholar
  9. 9.
    Vovelle C., Akrich R., Delbourgo R.: Kinetics of the Thermal Degradation of Cellulose and Wood in Inert and Oxidative Atmosphere. 9th Symp. on Comb. The Comb. Inst. (1982).Google Scholar
  10. 10.
    Calvin K. L., Diehl J. R.: Combustion of Irradiated Dry and Wet Oak. Combustion and Flame, 42 (1981) 123–138.CrossRefGoogle Scholar
  11. 11.
    Roache P.: Computational Fluid Dynamics. Hermosa Publishers, Albuberque (1972).MATHGoogle Scholar
  12. 12.
    Srinivas B., Amundson N. R.: Intrapartiele Effects in Char Combustion. Steady State Analysis. The Can. J. of Chem. Eng., 58 (1980).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • B. Porterie
    • 1
  • R. Saurel
    • 1
  • J-C. Loraud
    • 1
  • M. Larini
    • 1
  1. 1.Laboratoire des Systèmes Energétiques et Transferts ThermiquesUniversité de Provence — Centre de Saint-Jérôme. Case 321Marseille Cedex 13France

Personalised recommendations