Advertisement

Heat Transfer in Building Fires

  • Philip H. Thomas
Conference paper
Part of the EUROTHERM Seminars book series (EUROTHERM, volume 17)

Abstract

The paper gives, at the level of current engineering practice, a brief introduction to problems arising from the thermal interaction between a fire and an exposed combustible material or water used in extinguishing. The current development of fire safety engineering requires that many conventional fire tests for ignition, flame spread, heat release, etc. be reformulated or new tests be adopted to provide data for boundary conditions used with computational fluid dynamics (CFD).

Keywords

Computational Fluid Dynamic Fire Safety Flame Spread Fire Spread Flame Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas P. H., Heselden A. J. M., Law M.: Fully Developed Compartment Fires: Two Kinds of Behaviour. Fire Research Technical Paper No. 18, HMSO, London (1967)Google Scholar
  2. 2.
    International Standards Organisation: Fire Resistance Tests Elements of Building Construction, ISO 834, International Organization for Standardization, Geneva (1975).Google Scholar
  3. 3.
    Shipp M.: A Hydrocarbon Fire Standard: An Assessment of Existing Information. Department of Energy, Offshore Energy Technology Board, OT/R/8294 (1983).Google Scholar
  4. 4.
    Lie T. T.: Temperature of Protected Steel in Fire Behaviour of Structural Steel in Fire. Symposium No. 2 HMSO, London (1967) 99.Google Scholar
  5. 5.
    Lockwood F. C., Malalasekera W. M. G.: Fire Computations: The Flashover Phenomena. 22nd Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1989) 190.Google Scholar
  6. 6.
    Williamson R. B., Mowrer F. W., Fisher F. L.: Combustion Science and Technology 41 (1984) 83–99.CrossRefGoogle Scholar
  7. 7.
    Bowes P. C.: Self-Heating: Evaluating and Controlling the Hazards. HMSO, London (1984).Google Scholar
  8. 8.
    Zeldovich Y. B.: Dockl. Academy Nauk SSSR 150 (2) (1963) 1283–85.Google Scholar
  9. 9.
    Kanury A. M.: Ignition of Cellulosie Materials: A Review. Fire Research Abstracts and Reviews 14 (1972) 24–52.Google Scholar
  10. 10.
    Rasbash D. J.: Relevance of the Firepoint Theory to the Assessment of Fire Behaviour of Combustible Materials, in International Symposium on Fire Safety of Combustible Materials. Edinburgh University (1975) 169–178.Google Scholar
  11. 11.
    Kashiwagi T., Kashiwagi T.: A Study of the Radiative Ignition Mechanism of a Liquid Fuel Using High Speed Holographic Interferometry. in 19th Symposium (Int. ) on Combustion. The Combustion Institute (1982) 1511–1521.Google Scholar
  12. 12.
    Williams F. A.: Mechanism of Fire Spread, in 16th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1977) 1281–1294.Google Scholar
  13. 13.
    Quintiere J. G.: Surface Flame Spread. The Society of Fire Protection Engineers, in Handbook of Fire Protection Engineering S. F. P. E. -Boston, Mass U. S. A., Section I-Chapter 24 (1988).Google Scholar
  14. 14.
    Di Blasi C., Crescitelli S., Russo G., Fernandez-Pello A. C.: Predictions of the Dependence on the Opposed Flow Characteristics of the Flame Spread Rate on Thick Solid Fuel, in Proceedings of the 2nd International Symposium on a Fire Safety Science. Hemisphere Publishing Corporation (1989) 119.Google Scholar
  15. 15.
    Quintiere J. G.: A Simplified Theory for Generalizing Results from a Radiant Panel Rate of Flame Spread Apparatus. Fire and Materials 5 (1981) 52–60.CrossRefGoogle Scholar
  16. 16.
    Parker W. J.: Flame Spread Model for Cellulosic Materials. J. Fire and Flammability 3 (1972) 254–269.Google Scholar
  17. 17.
    De Ris J. N.: Spread of a Laminar Diffusion Flame. 12th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1969) 241–252.Google Scholar
  18. 18.
    Saito K., Quintiere J. G., Williams F. A.: Upward Turbulent Flame Spread, in Proceedings of 1st International Symposium on Fire Safety Science. Hemisphere Publishing Corp. (1986) 75.Google Scholar
  19. 19.
    Thomas P. H. : The Size of Flames from Natural Fires. 9th Symposium (International) on Combustion (1963) 844–859.Google Scholar
  20. 20.
    Thomas P. H. ; Karlsson B. : To be published.Google Scholar
  21. 21.
    Mygind J.: The Burning of Wood. ( Thesis in Danish ), J. Jorgensen & Co. Kopenhagen (1951).Google Scholar
  22. 22.
    Hasemi Y.: Thermal Modelling of Upward Flame Spread, in Proceedings of the 1st International Symposium on Fire Safety Science. Hemisphere Publishing Corporation (1986) 87.Google Scholar
  23. 23.
    Delichatsios M. A.: Burning and Upward Flame Spread on Vertical Surfaces: An Outline of a Comprehensive Simulation Model and Simplified Correlations. Factory Mutual Research. Technical Report FMRC, I. O. Q. O. J. BU, August (1988).Google Scholar
  24. 24.
    Fennell D.: Investigation in the King’s Cross Underground Fire. HMSO, London (1988).Google Scholar
  25. 25.
    Drysdale D. D. : Personal Communication.Google Scholar
  26. 26.
    Thomas P. H.: Some Physical Aspects of the Spread of Fire. F. O. U. Brand, Fire.Research Development News, Swedish Fire Protection Association 1 (1975).Google Scholar
  27. 27.
    Delichatsios M. A., De Ris J.: An Analytic Model for the Pyrolysis of Charring Materials. The Modelling of Pre-Flashover Fires CIB W14 Workshop. CIB Report Publication 81 (1983) 34–41.Google Scholar
  28. 28.
    Waterman T. E.: Room Flashover-Criteria and Synthesis. Fire Technology 4 (1968) 25–31.CrossRefGoogle Scholar
  29. 29.
    Orloff L., Modak A. T., Markstein G. H.: Radiation from Smoke Layers. 17th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1979) 1029–1038.Google Scholar
  30. 30.
    Tien C. H., Lee K. Y., Stretton A. J.: Radiation Heat Transfer. The Society of Fire Protection Engineers. Handbook of Fire Protection Engineering, SFPE Boston, Massachussets, USA, Section 1, Chapter 5 (1988).Google Scholar
  31. 31.
    Thomas P. H., Bullen M. L., Quintiere J. G., McCaffrey B. J.: Flashover and Instabilities in Fire Behaviour. Combustion and Flame 38 (1980) 159–171.CrossRefGoogle Scholar
  32. 32.
    Thomas P. H. : Fire Safety Journal 3 (1980/81) 67–76.Google Scholar
  33. 33.
    Friedman R.: Behaviour of Fires in Compartments. International Symposium on Fire Safety of Combustible Materials. Edinburgh University (1975) 100–113.Google Scholar
  34. 34.
    Bullen M. L., Thomas P. K.: Compartment Fires with Non-Cellulosic Fuels. 17th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1979) 1139–1148.Google Scholar
  35. 35.
    Hasemi T.: Theoretical and Experimental Study of Flashover. CSNI Meeting on Interation of Fire and Explosion with Ventilation Systems. Nuclear Facilities, Los Alamos National Laboratory, April (1983) 283–300.Google Scholar
  36. 36.
    Friedman R.: Survey of Computer Models for Fire Smoke. Factory Mutual Research, Norwood, MASS May (1990).Google Scholar
  37. 37.
    Rasbash D. J.: The Extinction of Fire with Plain Water: A Review: Proceedings of 1st International Symposium on Fire Safety Science. Hemisphere Publishing Corporation (1986) 1145.Google Scholar
  38. 38.
    Layman L.: Attacking and Extinguishing Interior Fires. National Fire Protection Association, Boston (1952) 134.Google Scholar
  39. 39.
    Pietrzak L. M., Johanson G. A.: Analysis of Fire Suppression Effeetivness Using a Physically Based Computer Simulation, in Proceedings of 1st International Symposium, Fire Safety Science. Hemisphere Publishing Corporation (1986) 1207.Google Scholar
  40. 40.
    Thomas P. H. : Use of Water in the Extinction of Large Fires. Inst. Fire Eng. 19 Pietreak (35) (1959)130–2.Google Scholar
  41. 41.
    Albert R. L., Delichatsios M. A.: Calculated Interaction of Water Droplet Sprays with Fire Plumes in Compartments. National Bureau of Standards, Centre for Fire Research, NBS-GCR 86–520 (1986).Google Scholar
  42. 42.
    Gardiner A. J.: The Mathematical Modelling of the Interaction Between Sprinkler Sprays and the Thermally Buoyant Layers of Gases from Fires, in Ph. D Thesis, South Bank Polytechnic, London, December (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Philip H. Thomas
    • 1
  1. 1.Division of Building Fire Safety TechnologyLund UniversityLundSweden

Personalised recommendations