Invited Lecture: Review of Non-Intrusive Measuring Procedures Applied to Radiative Gases

  • Hans J. Pfeifer
Conference paper
Part of the EUROTHERM Seminars book series (EUROTHERM, volume 17)


A review will be given on the various optical investigation methods to study radiative flows. Because it is not possible due to the limited space available to describe the physical background of these procedures emphasis is placed on the most recent progress which has been achieved on the basis of more efficient laser sources and computers.

Details will be given on new developments in different kinds of velocity measurements, i.e. particle image velocimetry, laser two-focus, and laser Doppler anemometry as well as on spectroscopic procedures like Raman and CARS spectroscopy.


Particle Image Velocimetry Laser Doppler Anemometry Technical Paper Series Radiative Flow Narrow Band Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckbreth A. C.: Spatially Precise Laser Diagnostics For Combustion. Icias 81 Record (1981) 71–89.Google Scholar
  2. 2.
    Goulard R.: Optical Measurements of Thermodynamic Properties in Flow Fields, in AGARD Conference Proceedings, CP 193, paper No. 13 (1976).Google Scholar
  3. 3.
    Witze P. O., Dyer T. M.: Laser Measurement Techniques Applied to Turbulent Combustion in Piston Engines. Experiments in Fluids 4 (1986) 81–92.CrossRefADSGoogle Scholar
  4. 4.
    Attal B., Druet S., Bailly R., Péalat M., Taran J. P.: Techniques RAMAN d’études des écoulements et des flammes par laser. Spectra 2000 7(54) (1979)41–50.Google Scholar
  5. 5.
    Laurendeau N. M.: Temperature Measurements by Light Scattering Methods. Prog. Energy and Comb. Science 14. Pergamon Press (1988) 147–170.Google Scholar
  6. 6.
    TSI Incorporated, P. O. Box 64394 St. Paul, MN 55164, USA, Brochure “Colorburst” (1990).Google Scholar
  7. 7.
    Dantek, Dk 2740 Skovlunde, Denmark, Brochure Fiber Flow Anemometers (1990).Google Scholar
  8. 8.
    Domnick J., Durst F., Müller R., Naqwi A.: Improved Optical Systems for Velocimetry and Particle Sizing using Semiconductor Lasers and Detectors in Proceedings Fifth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (1990).Google Scholar
  9. 9.
    Dopheide D., Faber M., Reim G., Taux G.: Laser and Avalanche Diodes for Velocity Measurement by Laser Doppler Anemometry. Experiments in Fluids 6 (1988) 289–297.CrossRefADSGoogle Scholar
  10. 10.
    Damp S., Pfeifer H. J.: Anémomètre laser à effet Doppler miniaturisé à diode laser, AAAF. in Proc. 26ème Colloque d’Aérodynamique Appliquée, Toulouse (1989) 23–25 octobre.Google Scholar
  11. 11.
    Hsieh W. H., Chuang C. L., Yang A. S., Cherng D. L., Yang V., Kuo K. K.: Measurement of Flow field in a Simulated Solid-Propellant Ducted Rocket Combustor Using Laser Doppler Velocimetry. in Proceedings AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference. AIAA-89–2789 (1989).Google Scholar
  12. 12.
    Chigier N.: Velocity Measurements in Inhomogeneous Combustion Systems. Combustion and Flame 78 (1989) 129–151.CrossRefGoogle Scholar
  13. 13.
    Labbe J., Jerot A.: Some Problems and Solutions in the Application of Laser Velocimetry to Continuous Combustion. ONERA, 29, avenue de la Division Leclerc, 92322 Chatillon, France, Report T. P. 200 (1987).Google Scholar
  14. 14.
    Gould R. D., Stevenson W. H., Thompson D.: Turbulence Characteristics of an Axisymmetrie Reacting Flow. NASA Contractor Report 4110 (1988).Google Scholar
  15. 15.
    Duräo D. F. G., Mendes-Lopes J. M. C.: Laser Velocimetry for Combustion, in Proceedings NATO Advanced Study Institute. Kluwer Academic Publishers (1989) 151–177.Google Scholar
  16. 16.
    Cheng R. K., Shepherd I. G., Gökalp I.: A Comparison of the Velocity and Scalar Spectra in Premixed Turbulent Flames. Combustion and Flame 78 (1989)205–221.Google Scholar
  17. 17.
    Schodl R.: A Laser-Two-Focus (L2F) Velocimeter for Automatic Flow Vector Measurements in the Rotating Components of Turbomachines. Transactions of the ASME, 102 (1980) 412–419.CrossRefGoogle Scholar
  18. 18.
    Smart A. E., Wisler D. C., Mayo W. T.: Optical Advances in Laser Transit Anemometry. Transactions of the ASME 103 (1981) 438–444.Google Scholar
  19. 19.
    Kugler P., Langer G.: Laser Anemometry Techniques for Hot Flows, in NASA Technical Memorandum, TT 20077 (1987).Google Scholar
  20. 20.
    Förster W., Schodl R., Beversdorff M.: Design and Experimental Verification of 3-D Velocimeters Based on the Laser-2-Focus Technique, in Proceedings of the 5th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Paper 8. 4. Instituto Superior Técnico, Lisbon, Portugal (1990).Google Scholar
  21. 21.
    Reuss D. L., Adrian R. J., Landreth C. C., French D. T., Fansler T. D.: Instantaneous Planar Measurements of Velocity and Large-Scale Vortieity and Strain Rate in an Engine Using Particle Image Velocimetry. SAE Technical Paper Series, 890616 (1989).CrossRefGoogle Scholar
  22. 22.
    Reuss D. L., Adrian R. J., Landreth C. C.: Two-Dimensional Velocity Measurements in a Laminar Flame Using Particle Image Velocimetry. Combust. Sci. and Tech. 67 (1989) 73–83.CrossRefGoogle Scholar
  23. 23.
    Höcker R., Kompenhans J.: Application of Particle Image Velocimetry to Transonic Flows, in Proceedings of the 5th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Paper 15. 1. Instituto Superior Técnico, Lisbon, Portugal (1990).Google Scholar
  24. 24.
    Reuss D. L., Bardsley M.,. Felton P. G, Landreth C. C., Adrian R. J.: Velocity, Vortieity and Strain Rate ahead of a Flame Measured in an Engine Using Particle Image Velocimetry. SAE Technical Paper Series 900053(1990).Google Scholar
  25. 25.
    Carts A.: Ruby Lasers Shine on Laser Focus World (July 1990) 83–91.Google Scholar
  26. 26.
    Cenedese A., Palmieri G., Romano G. P.: Turbulent Intensity Evaluation with PIV. in Proceedings of the 5th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Paper No. 15. 5. Instituto Superior Técnico, Lisbon, Portugal (1990).Google Scholar
  27. 27.
    Eckbreth A. C.: Invited Paper-CARS Applications to Combustion Diagnostics. SPIE, Manufacturing Applications of Lasers, 621 (1986) 116–124.Google Scholar
  28. 28.
    Eichhorn A.: Aufbau einer CARS-Apparatur zur Untersuchung der Durchführbarkeit von Dichte-und Temperaturmessungen mit Hoher Zeitauflösung. French-German Research Institute (ISL), 68301 Saint-Louis France, Report R117/S7 (1987).Google Scholar
  29. 29.
    Marie J. J., Cotterau M. J.: Mesure de température par D. R. A. S. C., Application au moteur thermique. Entropie 135 (1987) 64–67.Google Scholar
  30. 30.
    Antcliff R., Jarrett O. Jr: Multispecies Coherent Anti-Stokes Raman Scattering Instruments for Turbulent Combustion. Rev. Sci. Instrum. 58 (11) (1987) 2075–2080.CrossRefADSGoogle Scholar
  31. 31.
    Farrow R., Trebino R., Palmer R.: High-Resolution CARS Measurements of Temperature Profiles and Pressure in a Tungsten Lamp. Appl. Optics 26 (2) (1987) 331–335.CrossRefADSGoogle Scholar
  32. 32.
    Yueh F. Y., Beiting E. J.: Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser. App. Optics 27 (15) (1988).Google Scholar
  33. 33.
    Dreier T., Lange B., Wolfrum J., Zahn M.: Determination of Temperature and Concentration of Molecular Nitrogen, Oxygen and Methane with Coherent Anti-Stokes Raman Scattering. Appl. Phys. B45 (1988) 183–190.CrossRefGoogle Scholar
  34. 34.
    Boquillon J. P., Péalat M., Bouchardy P., Collin G., Magre P., Taran J. P.: Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error. Optics Letters 13 (9) (1988) 722–724.CrossRefADSGoogle Scholar
  35. 35.
    Scholten T., Lucassen W., De Mul F., Grewe J.: Compensating Pulse-to-Pulse Fluctuations and Increasing Spectral Reproducibility of Phase-Matched CARS Measurements. Appl. Optics 28 (15) (1988) 3225–3232.CrossRefADSGoogle Scholar
  36. 36.
    Goss L. P., Trump D. D.: Combined CARS/LDA Instrument for Simultaneous Temperature and Velocity Measurements. Experiments in Fluids 6 (1988) 189–198.CrossRefADSGoogle Scholar
  37. 37.
    Aldén M., Bengttsson P., Edner H., Krôll S., Nilsson N.: Rotational CARS: A Comparison of Different Techniques with Emphasis on Accuracy in Temperature Determination. Appl. Optics 28 (15) (1989) 3206–3219.CrossRefADSGoogle Scholar
  38. 38.
    Kroll S., Aldén M., Bentsson P. E., Lôfstrôm C.: An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry. Appl. Phys. B49, (1989) 445–453.CrossRefGoogle Scholar
  39. 39.
    Kreutner W., Meier W., Plath I.,. Strieker W, Woyde M.: Optical Thermometry in Flames Using CARS Laser Optoelektronik 22 (2) (1990).Google Scholar
  40. 40.
    Ôtugen M. V., Namer I.: Rayleigh Scattering Temperature Measurements in a Plane Turbulent Air Jet at Moderate Reynolds Numbers. Experiments in Fluids 6 (1988) 461–466.ADSGoogle Scholar
  41. 41.
    Cladnick P. G., LaRue J. C., Samuelsen G. S.: Simultaneous Optical Measurement of Velocity and Temperature Using Laser Anemometry and Rayleigh Scattering, in Proceedings of the 5th Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics, Paper 8. 2. Instituto Superior Técnico, Lisbon, Portugal (1990).Google Scholar
  42. 42.
    Lederman S., Posillico C.: Unified Spontaneous Raman and CARS System.Google Scholar
  43. 43.
    Strieker W., Kreutner W., Just T.: Simultaneous Temperature Measurements with Raman and CARS in Laminar Flames. AGARD CP399. Advance Instrumentation for Aero-Engine Components, paper No. 1 (1986).Google Scholar
  44. 44.
    Leipertz A.: Non-Destructive Probing of Free Jets Using cw-Laser Raman Spectroscopy. Optics and Laser Technology (February 1981) 21–25.Google Scholar
  45. 45.
    Bobin L., Brom G.: Analyse des fluctuations turbulentes de la masse volumique au moyen de la diffusion Raman spontanée. French-German Research Institute (ISL), 68301 St. -Louis, France. Report R103 /89 (1989).Google Scholar
  46. 46.
    Bobin L., Brom G.: Mesure par diffusion Raman spontanée de la masse volumique locale dans un écoulement gazeux. French-German Research Institute (ISL), 68301 St. -Louis, France. Report R118 /89 (1989).Google Scholar
  47. 47.
    Chabay I., Rosasco G. J., Kashiwagi T.: Species-Specific Raman Spectroscopic Measurements of Concentration Fluctuations in Unsteady Flow. J. Chem. Phys. 70 (9) (1979) 4149–4154.CrossRefADSGoogle Scholar
  48. 48.
    Exton R. J., Hillard M. E.: Raman Doppler Velocimetry: A Unified Approach for Measuring Molecular Flow Velocity, Temperature, and Pressure. Appl. Optics 25 (1) (1986) 14–21.CrossRefADSGoogle Scholar
  49. 49.
    Salmon J. T., Laurendean N. M.: Concentration Measurements of Atomic Hydrogen in Subatmospheric CH/0/Ar Flat Flames. Combustion and Flame 74 (1988) 221–231.CrossRefGoogle Scholar
  50. 50.
    Meier U., Bittner J., Kohre-Hoinghaus K., Just T.: Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames, in Proc. 22nd Symp. on Combustion. The Combustion Inst. (1988) 1887–1896.Google Scholar
  51. 51.
    Eckbreth A. C.: Laser Diagnostics for Combustion Temperature. Abacus Press, Cambridge, Mass, USA (1988) 301–361.Google Scholar
  52. 52.
    Laurendeau N. M., Goldsmith J. E. M.: Comparison of Hydroxyl Concentration Profiles using Five Laser-Induced Fluorescence Methods in a Lean Subatmospheric-Pressure H/O/Ar Flame. Combust. Sci. and Tech. 63(1989)139–152.Google Scholar
  53. 53.
    Crosley D. R.: Semiquantitative Laser-Induced Fluorescence in Flames. Combustion and Flame 78 (1989) 153–167.CrossRefGoogle Scholar
  54. 54.
    Lawifzki A., Plath I., Strieker W., Bittner J., Meier U., Kohrse-Höinghaus K.: Laser-Induced Fluorescence Determination of Flame Temperatures in Comparison with CARS Measurements. Appl. Phy. B50 (1990) 513–518.CrossRefADSGoogle Scholar
  55. 55.
    Klingenberg G., Mach H.: Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases-I: Spectroscopic Temperature Measurements Inside the Muzzle Flash of a Rifle. Combustion and Flame 27 (1976) 163–176.CrossRefGoogle Scholar
  56. 56.
    Mach H., Werner U., Coquerelle P.: Vergleich zweier Verfahren zur spektroskopischen Messung von Flammentemperaturen. French-German Research Institute (ISL), 68301 Saint-Louis, France. Report No. 605 /80 (1980).Google Scholar
  57. 57.
    Mach H., Hensel D., Werner U., Masur H.: Durchfürhrbarkeitsstudie zum Bau einer Anlage zur Simulation der Treibgasströmung in einem Waffenrohr. Teil IV. ISL Report R135/86. French-German Research Institute (ISL), 68301 Saint-Louis, France (1986).Google Scholar
  58. 58.
    Eichhorn A., Mach H.: Time Resolved Temperature Measurement in Flows with Cylindrical Symmetry. J. Ballistics, 9 (3) (1987) 2311–2334.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Hans J. Pfeifer
    • 1
  1. 1.French-German Research InstituteSaint-LouisFrance

Personalised recommendations