The Radiative Properties of Soot Agglomerates

  • P. A. Bonczyk
  • R. J. Hall
Conference paper
Part of the EUROTHERM Seminars book series (EUROTHERM, volume 17)


Soot particle sizing and density measurement by laser light scattering has been reformulated to take into account non-spherical shape effects. By assuming a morphology consisting of chains of monomer spheroids, and the concepts of fractal theory, it has been possible to set up extinction and multiangle scattering measurements which make it possible to determine the structural parameters of such clusters. This permits more realistic calculations of soot radiative properties, and puts soot sizing/density measurements on a better basis. Experiments performed in an ethylene-air slot burner yield credible cluster parameters using this approach.


Fractal Dimension Soot Particle Scattered Intensity Rayleigh Scattering Laser Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markstein G. H.: Relationship Between Smoke Point and Radiant Emission from Buoyant Turbulent and Laminar Diffusion Flames, in Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA (1984) 1055–1061.Google Scholar
  2. 2.
    Kerker M.: The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York (1969).Google Scholar
  3. 3.
    Bockhorn H, Fetting P., Heddrich A., Wannemaeher G.: Investigation of the Surface Growth of Soot in Flat Low Pressure Hydrocarbon Oxygen Flames, in Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA (1984) 979–988Google Scholar
  4. 4.
    Harris S. J., Weiner A. M.: Determination of the Rate Constant for Soot Surface Growth. Combust. Sci. Technol. 32 (1983) 267–275.CrossRefGoogle Scholar
  5. 5.
    Bonczyk P. A., Sangiovanni J. J.: Optical and Probe Measurements of Soot in a Burning Droplet Fuel Stream. Combust. Sci. Technol. 36 (1984) 135–147.CrossRefGoogle Scholar
  6. 6.
    Weitz D. A., Huang J. S., Lin M. Y., Sung J.: Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids. Phys. Rev. Lett. 54 (1985) 1416–1419.CrossRefADSGoogle Scholar
  7. 7.
    Megaridis C. M., Dobbins R. A.: Morphological Description of Flame-Generated Fractals. Combust. Sci. Technol. 71 (1990) 95–109.CrossRefGoogle Scholar
  8. 8.
    Samson R. J., Mulholland G. W., Gentry J. W.: Structural Analysis of Soot Agglomerates. Langmuir 3 (1987) 272–281.CrossRefGoogle Scholar
  9. 9.
    Forrest S. R., Witten Jr T. A.: Long-Range Correlations in Smoke-Particle Aggregates. J. Phys. A: Math. Gen 12 (1979) L109 - L116.CrossRefADSGoogle Scholar
  10. 10.
    Hurd A. J., Schaefer D. W., Martin J. G.: Surface and Mass Fractals in Vapor-Phase Aggregates. Phys. Rev. A 35 (1987) 2361–2364.CrossRefADSGoogle Scholar
  11. 11.
    Witten T. A., Sander L. M.: Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 47 (1981) 1400–1403.CrossRefADSGoogle Scholar
  12. 12.
    Botet R., Jullien R., Kolb M.: Hierarchical Model for Irreversible Kinetic Cluster Formation. J. Phys. A: Math. Gen 17 (1984) L75 - L79.CrossRefADSGoogle Scholar
  13. 13.
    Berry M. V., Percival I. C.: Optics of Fractal Cluster Such as Smoke. Opt. Acta 33 (1986) 577–591.CrossRefADSGoogle Scholar
  14. 14.
    Mountain R. D., Mulholland G. W.: Stochastic Dynamics Simulation of Particle Aggregation, in Kinetics of Aggregation and Gelation ( F. Family and D. P. Landau Eds.) North-Holland, Amsterdam (1984) 83–86.Google Scholar
  15. 15.
    Mountain R. D., Mulholland G. W.: Light Scattering From Simulated Smoke Aggregates. Langmuir 4 (1988) 1321–1326.CrossRefGoogle Scholar
  16. 16.
    Hurd A. J., Flower W. L.: In-Situ Growth and Structure of Fractal Silica Aggregates in a Flame. J. Colloid Interface Sci. 122 (1988) 178–192.CrossRefGoogle Scholar
  17. 17.
    Berne B. J., Pecora R.: Dynamic Light Scattering Wiley, New York (1976).Google Scholar
  18. 18.
    Freltoit T., Kjems J. K., Sinha S. K.: Power-Lens Correlations and Finite-Size Effects in Silica Particle Aggregates Studies by Small-Angle Neutron Scattering. Phys. Rev. B 33 (1986) 269–275.CrossRefADSGoogle Scholar
  19. 19.
    Nelson J.: Test of a Mean Field Theory for the Optics of Fractal Clusters. J. Mod. Opt. 36 (1989) 1031–1057.CrossRefADSGoogle Scholar
  20. 20.
    Bonczyk P. A.: Suppression of Soot in Flames by Alkaline-Earth and Other Metal Additives. Combust. Sci. Technol. 59 (1988) 143–163.CrossRefGoogle Scholar
  21. 21.
    Namer I., Schefer R. W., Chan M.: Interpretation of Rayleigh Scattering in a Flame. Lawrence Berkeley Laboratory, University of California, Report No. LBL-10655 (1980).Google Scholar
  22. 22.
    Fisher M. E., Burford R. J.: Theory of Critical-Point Scattering and Correlations. I. The Ising Model. Phys. Rev. 156 (1967) 583–622.Google Scholar
  23. 23.
    Bourrat X., Oberlin A.: Mass Fractal Analysis of Conducting Carbon Black Morphology. Carbon 26 (1988) 100–103.CrossRefGoogle Scholar
  24. 24.
    Ehrburher-Dolle F., Tence M.: Determination of the Fractal Dimension of Carbon Black Aggregates. Carbon 28 (1990) 448–452.CrossRefGoogle Scholar
  25. 25.
    England W. A.: An In-Situ X-Ray Small Angle Scattering Study of Soot Morphology in Flames. Combust. Sci. Technol. 46 (1986) 83–93.CrossRefADSGoogle Scholar
  26. 26.
    Senftieben H., Benedict E.: Uber die Optischen Konstanten und die Strahlungsgesetze der Kohle. Ann. Phys. 54 (1918) 65–78.Google Scholar
  27. 27.
    Vaglieco B. M., Beretta F., D’Alessio A.: In-Situ Evaluation of the Soot Refractive Index in the UV-Visible From the Measurement of the Scattering and Extinction Coefficients in Rich Flames. Combust. Flame 79 (1990)259–271.Google Scholar
  28. 28.
    Dalzell W. H., Sarofim A. F.: Optical Constants of Soot and Their Application to Heat-Flux Calculations. ASME J. Heat Trans. 91 (1969) 100–104.CrossRefGoogle Scholar
  29. 29.
    Dobbins R. A.: Optical Cross-Sections of Flame Generated Aggregates. Fall Technical Meeting of Eastern Section of Combustion Institute, Albany, NY (30 October, 1989 ).Google Scholar
  30. 30.
    Prado G., Lahaye J.: Physical Aspects of Nucleation and Growth of Soot Particles, in Particulate Carbon Formation During Combustion (D. C. Siegla and G. W. Smith, Eds.), Plenum Press, New York, p. 143 (1981).Google Scholar
  31. 31.
    Wersborg B. L., Howard J. B., Williams, G. C.: Physical Mechanisms in Carbon Formation in Flames. Fourteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA (1973) 929–940.Google Scholar
  32. 32.
    Guinier A., Fournet G.: Small Angle Scattering of X-Rays, Wiley, New York (1955).Google Scholar
  33. 33.
    Friedlander S. K.: Smoke, Dust and Haze, Wiley, New York (1977) 175–208.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • P. A. Bonczyk
    • 1
  • R. J. Hall
    • 1
  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations