Membrane-Delimited Stimulation of Heart Cell Calcium Current by ß-Adrenergic Signal-Transducing Gs Protein

  • S. Pelzer
  • Y. M. Shuba
  • L. Birnbaumer
  • T. F. McDonald
  • D. J. Pelzer
Conference paper
Part of the NATO ASI Series book series (volume 60)


A several-fold increase in calcium current (Ica) is a signal feature of the maximal beta-adrenergic response of the heart. It is generally ascribed to enhanced adenosine 3’,5’-cyclic monophosphate (cAMP)dependent phosphorylation of calcium (Ca) channels following beta-receptor activation of the guanosine nucleotide-binding (G) protein Gs, and Gs-activation of the adenylyl cyclase cascade. We blocked phosphorylation pathways in guinea pig ventricular cardiomyocytes to unmask other possible Ica-stimulatory modes. In blocked cells, Ica increased by approximately 50% during (i) beta-receptor activation of Gs, (ii) intracellular activation of Gs, and (iii) intracellular application of preactivated Gs. We conclude that fast, membrane-delimited Gs modulation participates in the physiological regulation of cardiac Ica. Additionally, membrane-delimited action by activated Gs seems to hinder Ca channel inhibition by D600 and may prime Ca channels for up-regulation by cAMP-dependent phosphorylation.

Key words

Cardiomyocytes-Calcium current regulation-Activated Gs protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro M, Brown AM (1987) Signal transduction by Gproteins. Kidney Int 32: 514–537CrossRefGoogle Scholar
  2. Brown AM, Birnbaumer L (1988) Direct G protein gating of ion channels. Am J Physiol 254 (Heart Circ Physiol 23): H401–H410PubMedGoogle Scholar
  3. Brown AM, Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 52: 197–213PubMedCrossRefGoogle Scholar
  4. Brown AM, Kunze DL, Yatani A (1984) Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J Physiol (Lond) 379: 495–514Google Scholar
  5. Brum G, Flockerzi V, Hofmann F, Osterrieder W, Trautwein W (1983) Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch 398: 147–154PubMedCrossRefGoogle Scholar
  6. Cavalié A, Ochi R, Pelzer D, Trautwein W (1983) Elementary currents through Cat+ channels in guinea pig myocytes. Pflügers Arch 398: 284–297PubMedCrossRefGoogle Scholar
  7. Gerbai E, Klöckner U, Isenberg G (1988) The a subunit of the GTP binding protein activates muscarinic potassium channels of the atrium. Science (Wash DC) 240: 1782–1783CrossRefGoogle Scholar
  8. Codina J, Hildebrandt JD, Sekura RD, Birnbaumer M, Bryan J, Manclark CR, Iyengar R, Birnbaumer L (1984a) Ns and NI, the stimulatory and inhibitory regulatory component of adenylyl cyclases: purification of the human erythrocyte proteins without the use of activating regulatory ligands. J, Biol Chem 259: 5871–5886.Google Scholar
  9. Codina J, Rosenthal W, Hildebrandt JD, Sekura RD, Birnbaumer L (1984b) Updated protocols and comments on the purification without use of activating ligands of the coupling proteins Ns and Ni of the hormone sensitive adenylyl cyclase. J Recept Res 4: 411–442PubMedGoogle Scholar
  10. Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The alpha subunit of GK opens atrial potassium channels. Science (Wash DC) 236: 442–445CrossRefGoogle Scholar
  11. Fleming JW, Strawbridge RA, Watanabe AM (1987) Muscarinic receptor regulation of cardiac adenylate cyclase activity. J Mol Cell Cardiol 19: 47–61PubMedCrossRefGoogle Scholar
  12. Galizzi J-P, Fosset M, Lazdunski M (1984) Properties of receptors for the Cat* channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Eur J Biochem 144: 211–215PubMedCrossRefGoogle Scholar
  13. Gilman, AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649PubMedCrossRefGoogle Scholar
  14. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391: 85–100PubMedCrossRefGoogle Scholar
  15. Hartzell HC, Fischmeister R (1987) Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Molec Pharmacol 32: 639–645Google Scholar
  16. Hescheler J., Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407: 182–189PubMedCrossRefGoogle Scholar
  17. Imoto Y, Yatani A, Reeves JP, Codina J, Birnbaumer L, Brown AM (1988) a-subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol 255 (Heart Circ Physiol 24 ): H722–H728PubMedGoogle Scholar
  18. Isenberg G, Cerbai E, Klöckner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer Berlin Heidelberg New York, pp 323–335Google Scholar
  19. Kaczmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release Trends Neurosci 10: 30–34Google Scholar
  20. Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of ßadrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405: 285–293PubMedCrossRefGoogle Scholar
  21. Kokubun S, Prod’hom B, Becker C, Porzig H, Reuter H (1986) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Molec Pharmacol 30: 571–584Google Scholar
  22. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The betagamma subunits of GTP-binding proteins activate the muscarinic K channel in heart. Nature (Lund) 325: 321–326CrossRefGoogle Scholar
  23. McDonald TF, MacLeod DP (1973) DNP-induced dissipation of ATP in anoxic ventricular muscle. J Physiol (Lond) 229: 583–599Google Scholar
  24. McDonald TF, Pelzer D, Trautwein W (1989) Dual action (stimulation, inhibition) of D600 on contractility and calcium channels in guinea-pig and cat heart cells. J Physiol (Lond) 414: 569–586Google Scholar
  25. Osterrieder W, Brum G, Hescheler J, Trautwein W, Hofmann F, Flockerzi V (1982) Injections of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Cat current. Nature (Lond) 298: 576–578CrossRefGoogle Scholar
  26. Pelzer D, Pelzer S, McDonald TF (1990) Properties and regulation of calcium channels in muscle cells. Rev Physiol Biochem Pharmacol 114: 107–207PubMedCrossRefGoogle Scholar
  27. Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature (Lond) 284: 17–22CrossRefGoogle Scholar
  28. Scott RH, Dolphin AC (1987) Activation of a G protein promotes agonist responses to calcium channel ligands. Nature (Lond) 330: 760–762CrossRefGoogle Scholar
  29. Seamon K, Daly J (1983) Forskolin, cyclic AMP and cellular physiology. Trends Pharmacol Sci 4: 120–123CrossRefGoogle Scholar
  30. Simmons MA, Hartzell HC (1988) Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes. Molec Pharmacol 33: 664–671Google Scholar
  31. Shuba, YM, Heßlinger B, Trautwein W, McDonald TF, Pelzer D (1990a) A dual-pipette technique that permits pressure-assisted dialysis and membrane potential measurement in voltage-clamped cardiomyocytes. Pflügers Arch 415: 767–773PubMedCrossRefGoogle Scholar
  32. Shuba, YM, Hesslinger B, Trautwein W, McDonald TF, Pelzer D (1990b) Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol (Lond) 424: 205–228Google Scholar
  33. Trautwein W, Hescheler J (1990) Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52: 257–274PubMedCrossRefGoogle Scholar
  34. Trautwein W, Cavalié A, Allen TJA, Shuba, YM, Pelzer S, Pelzer D (1990) Direct and indirect regulation of cardiac L-type calcium channels by B-adrenoceptor agonists. In: Nishizuka Y et al. (eds) The biology and medicine of signal transduction. Raven Press New York, pp 45–50Google Scholar
  35. Van Haastert D, Van Driel R, Jastorff B, Baraniak J, Stec W, De Wit R (1984) Competitive cAMP antagonists for cAMP-receptor proteins. J Biol Chem 259: 10020–10040PubMedGoogle Scholar
  36. Whitehouse S, Feramisco JR, Casnellie JE, Krebs EG, Walsh DA (1983) Studies on the kinetic mechanism of the catalytic subunit of the campdependent protein kinase. J Biol Chem 258: 3693–3701PubMedGoogle Scholar
  37. Yatani A, Brown AM (1989) Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science (Wash DC) 245: 71–74CrossRefGoogle Scholar
  38. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987) A G protein directly regulates mammalian cardiac calcium channels. Science (Wash DC) 238: 1288–1292CrossRefGoogle Scholar
  39. Yatani A, Imoto Y, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988) The stimulatory G protein of adenylyl cyclase, Gs, also stimulated dihydropyridine-sensitive Cat channels. Evidence for direct regulation independent of phosphorylation by camp-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem 263: 9887–9895PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Pelzer
    • 1
  • Y. M. Shuba
    • 1
    • 2
  • L. Birnbaumer
    • 1
    • 3
  • T. F. McDonald
    • 1
  • D. J. Pelzer
    • 1
  1. 1.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada
  2. 2.A. A. Bogomoletz Institute of PhysiologyUkrainian Academy of SciencesKiev 24USSR
  3. 3.Departments of Cell Biology and Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA

Personalised recommendations