Tissue distribution and possible function of the subunits of the L-type calcium channels

  • F. Hofmann
  • M. Biel
  • R. Hullin
  • E. Bosse
  • V. Flockerzi
Conference paper
Part of the NATO ASI Series book series (volume 60)


L-type calcium channels are present in many tissues and are the major pathway for voltage activated calcium entry in heart and smooth muscle and are essential for EC-coupling in skeletal muscle. The transverse tubular membrane of skeletal muscle contains a high density of the calcium channel protein, the so called receptor for calcium channel blockers (CaCB-receptor) [1]. The charge moved during excitation-contraction coupling (EC-coupling) is located in the CaCB-receptor and can be blocked by dihydropyridines and phenylalkylamines [2]. It is likely that in skeletal muscle the CaCB-receptor functions only as voltage sensor and not as calcium conducting channel since EC-coupling does not require calcium entry in skeletal muscle.


Skeletal Muscle Tracheal Smooth Muscle Heptad Repeat Tracheal Smooth Muscle Cell Voltage Activate Calcium Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Hofmann, V. Flockerzi, W. Nastainczyk, P. Ruth, T. Schneider, Current Topics in Cell. Regulation 31, 223–239 (1990).Google Scholar
  2. 2.
    E. Rios, G. Brum, Nature 325, 717–720 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Tanabe, H. Takeshima, A. Mikami, V. Flockerzi, H.Takahashi, K. Kangawa, M. Kojima, H. Matsuo, T. Hirose, S. Numa, Nature 328, 313–318 (1987).Google Scholar
  4. 4.
    S. B. Ellis, M. E. Williams, N. R. Ways, R. Brenner, A. H. Sharp, A. T. Leung, K. P. Campbell, E. McKenna, W. J. Koch, A. Hui, A. Schwartz, M. M. Harpold, Science 241, 1661–16 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Ruth, A. Röhrkasten, M. Biel, E. Bosse, S. Regulla, H. E. Meyer, V. Flockerzi, F. Hofmann, Science 245, 1115–1118 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Bosse, S. Regulla, M. Biel, P. Ruth, H. E. Meyer, V. Flockerzi, F. Hofmann, FEBS Letters 267, 153–156 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    S. D. Jay, A. B. Ellis, A. F. McCue, M. E. Williams, T S. Vedvick, M. M. Harpold, K. P. Campbell, Science 248, 490–492 (1990).PubMedCrossRefGoogle Scholar
  8. 7.
    S. D. Jay, A. B. Ellis, A. F. McCue, M. E. Williams, T S. Vedvick, M. M. Harpold, K. P. Campbell, Science 248, 490–492 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Regulla, T. Schneider, W. Nastainczyk, H. F. Meyer, F. Hofmann (1991) Embo J. 10, 45–49PubMedGoogle Scholar
  10. 10.
    J. Striessnig, H. Glossmann, W. A. Catterall, Proc.Natl.Acad.Sci.USA 87, 9108–9112 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Röhrkasten, H. Meyer, W. Nastainczyk, M. Sieber, F. Hofmann, J.Biol. Chem. 263, 15325–15329 (1988).Google Scholar
  12. 12.
    V. Flockerzi, J. Oeken, F. Hofmann, D. Pelzer, A. Cavalié, W. Trautwein, Nature 323, 66–68 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Hymel, J. Striessnig, H. Glossmann, H. Schindler, Proc. Natl.Acad.Sci.USA 85, 4290–4294 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    K. S. De Jongh, D. K. Merrick, W. A. Catterall, Proc.Natl. Acad.Sci.USA 86, 8585–8589 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Lai, M. J. Seagar, M. Takahashi, W. A. Catterall, J.Biol. Chem. 265, 20839–20848 (1990).PubMedGoogle Scholar
  16. 16.
    K. S. De Jongh, C. Warner, W. A. Catterall, J.Biol. Chem. 265, 14738–14741 (1990).PubMedGoogle Scholar
  17. 17.
    H. Jahn, W. Nastainczyk, A. Röhrkasten, T. Schneider, F. Hofmann, Eur.J.Biochem. 178, 535–542 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Mikami, K. Imoto, T. Tanabe, T. Niidome, Y. Mori, H. Takeshima, S. Narumiya, S. Numa, Nature 340, 230–233 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Biel, P. Ruth, E. Bosse, R. Hullin, W. Stühmer, V Flockerzi, F. Hofmann, FEBS Letters 269, 409–412 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Biel, R. Hullin, St. Freundner, D. Singer, N. Dascal, V. Flockerzi, F. Hofmann (1991) submittedGoogle Scholar
  21. 21.
    E. Perez-Reyers, X. Wei, A. Castellano, L. Birnbaumer, J.Biol Chem. 265, 20430–20436 (1990).Google Scholar
  22. 22.
    T. P. Snutch, J. P. Leonard, M. M. Gilbert, H. A. Lester, N. Davidson, Proc.Natl.Acad.Sci.USA 87, 3391–3395 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Mori, Th. Friedrich, M-S. Kim, A. Mikami, J. Nakai, P. Ruth, E. Bosse, F. Hofmann, V. Flockerzi, T. Furuichi, K. Mikoshiba, K. Imoto, T. Tanabe, S. Numa (1991) Nature 350, 398–402PubMedCrossRefGoogle Scholar
  24. 24.
    D. Singer, M. Biel, I. Lotan, V. Flockerzi, F. Hofmann, N. Dascal (1991) submittedGoogle Scholar
  25. 25.
    M. Kameyama, J. Hescheler, F. Hofmann, W. Trautwein, Pflügers Arch. 407, 123–128 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Welling, J. Felbel, K. Peper, F. Hofmann (1991) Blood Vessels 28, 154–158PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • F. Hofmann
    • 1
  • M. Biel
    • 1
  • R. Hullin
    • 1
  • E. Bosse
    • 1
  • V. Flockerzi
    • 1
  1. 1.Institut für Pharmakologie und ToxikologieTechnischen UniversitätMünchen 40Germany

Personalised recommendations