Skip to main content

ATP-Sensitive K+ Channels : Molecular Pharmacology, Regulation and Role in Diseased States

  • Conference paper
Intracellular Regulation of Ion Channels

Part of the book series: NATO ASI Series ((ASIH,volume 60))

  • 57 Accesses

Abstract

ATP-dependent K+ (KATP) channels have now been identified in many tissues including β-cells, cardiac cells, skeletal muscle cells and neurons (reviewed in.l). They are the targets of 2 important classes of drugs, the antidiabetic sulfonylureas (2,3), which block the channel, and a series of compounds called K+ channel openers (24,25) and which include cromakalim, pinacidil, nicorandil, minoxidil sulfate, and RP 49356, which tend to maintain the channel in an open conformation. The activity of KATP channels is regulated by the ATP/ADP ratio. ATP or ADP alone inhibit the KATP channel. However, in the presence of ATP, ADP-Mg2+ activates the channel (see for example 6). The KATP channel is an excellent reporter of intracellular variations of the ATP/ADP ratio and has been used to demonstrate the presence of Cl channels essential for oxydative phosphorylation in mitochondria (7)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft F. M. (1988) Annu. Rev. Neurosci. 11, 97–118

    Google Scholar 

  2. Schmid-Antomarchi H., De Weille J. R., Fosset M., Lazdunski M. (1987) J. Biol. Chem. 262, 15840–15844

    Google Scholar 

  3. Fosset M., De Weille J. R., Green R. D., Schmid-Antomarchi H., Lazdunski M. (1988) J. Biol. Chem. 263[17], 7933–7936

    PubMed  CAS  Google Scholar 

  4. Quast U., Cook S. (1989) Trends Pharmacol. Sci. 10, 431–435

    CAS  Google Scholar 

  5. Adwards G., Weston A. H. (1990) Trends Pharmacol. Sci. 11, 17–422

    Google Scholar 

  6. Findlay I. (1988) J. Membr. Biol. 101, 83–92

    Article  PubMed  CAS  Google Scholar 

  7. De Weille J. R., Lazdunski M. (1990) Biochem. Biophys. Res. Commun. 168[3], 1137–1142

    Article  Google Scholar 

  8. Champigny G., Verrier B., Lazdunski M. (1991) Biochem. Biophys. Res. Commun., sous presse

    Google Scholar 

  9. De Weille J. R., Schmid-Antomarchi H., Fosset M,. Lazdunski M. (1988) Proc. Natl. Acad. Sci. USA 85, 1312–1316

    Google Scholar 

  10. De Weille J. R., Schmid-Antomarchi H., Fosset M., Lazdunski M. (1989) Proc. Natl. Acad. Sci. USA 86, 2971–2975

    Google Scholar 

  11. Dunne W. J., Petersen O. H. (1991) Biochim. Biophys. Acta. 1071, 67–82

    Google Scholar 

  12. Noma A. (1983) Nature 305, 147–148

    Article  PubMed  CAS  Google Scholar 

  13. Gasser R. N. A., Vaughan-Jones R. D. (1990) J. Physiol. 431, 713–741

    PubMed  CAS  Google Scholar 

  14. Escande D., Thuringer D., Le Guem S., Corteix J., Laville M., Cavero I. (1989) Pflügers Arch. 414, 669–675

    Article  PubMed  CAS  Google Scholar 

  15. Grover G. J., McCullough J. R., Henry D. E., Conder M. L., Sleph P. G. (1989) J. Pharmacol. Exp. Ther. 251, 98–104

    Google Scholar 

  16. Grover G. J., Dzwonczyk S., Sleph P. H. (1990) Eur. J. Pharmacol. 191, 11–18

    Article  PubMed  CAS  Google Scholar 

  17. Bernardi H., Fosset M., Lazdunski M. (1988) Proc. Natl. Acad. Sci. USA 85, 9816–9820

    Google Scholar 

  18. Mourre C., WidmannC., Lazdunski M. (1990) Brain Research 519[1], 2–43

    Article  Google Scholar 

  19. Mourne C., WidmannC., Lazdunski M. (1991) Brain Research 540, 340–344

    Article  Google Scholar 

  20. Amoroso S., Schmid-Antomarchi H., Fosset M., Lazdunski M. (1990) Science 247, 852–854

    Article  PubMed  CAS  Google Scholar 

  21. Hausser M. A., De Weille J. R., Lazdunski M. (1991) Biochem. Biophys. Res. Commun. 174 [2] 909–914

    Article  CAS  Google Scholar 

  22. Schmid-Antomarchi H, AmorosoS., Fosset M., Lazdunski M. (1990) Proc. Natl. Acad. Sci. USA 87 [9], 3489–3492

    Article  PubMed  CAS  Google Scholar 

  23. Honoré E., Lazdunski M. (1991) Proc. Natl. Acad. Sci. USA, sous presse

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazdunski, M., Fosset, M., De Weille, J., Honoré, E., Mourre, C. (1992). ATP-Sensitive K+ Channels : Molecular Pharmacology, Regulation and Role in Diseased States. In: Morad, M., Agus, Z. (eds) Intracellular Regulation of Ion Channels. NATO ASI Series, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84628-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84628-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84630-4

  • Online ISBN: 978-3-642-84628-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics