Molecular mechanisms of antifungal activity and fungal resistence: focus on inhibitors of ergosterol biosynthesis

  • H. Moereels
  • H. Vanden Bossche
  • P. Marichal
Conference paper
Part of the NATO ASI Series book series (volume 69)

Abstract

Metabolic differences between hosts and their fungal pathogens provide scientists, interested in the development of antifungal agents, with selective targets for chemotherapeutic attack. There are many ways to select targets (for a review see Kerridge and Vanden Bossche 1990). A survey can be made of targets that are absent from host cells. The best examples are enzymes involved in the synthesis and hydrolysis of chitin, a structural polysaccharide absent from mammals. An other example is the β-l,3-glucan synthase responsible for the synthesis of the fungal cell wall β-glucan. Such targets are not only involved in the synthesis of cell wall components, they are also present in pathways of intermediary metabolism. An example is the S-adenosyl-L-methionine-Δ24-sterol methyltransferase. This mitochondrial enzyme is involved in the 24-alkylation of lanosterol or zymosterol, a step not present in mammalian cells.

Keywords

Cholesterol NADPH Candida Triazole Aspergillosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyama Y, YoshidaY, Hata S, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB (1983) Altered cytochrome P-450 in a yeast mutant blocked in demethylating C-32 of lanosterol. J. Biol. Chem. 258: 9040–9042.PubMedGoogle Scholar
  2. Aoyama Y, Yoshida Y, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB (1987) Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in 14α-demethylation. J. Biol. Chem. 262:14260–14264.PubMedGoogle Scholar
  3. Barrett-Bee KJ, Lane AC, Turner RW (1986) The mode of antifungal action of tolnaftate. J. Med. Vet. Mycol. 24: 155–160.PubMedCrossRefGoogle Scholar
  4. Barrett-Bee KJ, Lees J, Pinder P, Campbell J, Newboult L (1988) Biochemical studies with a novel antifungal agent, ICI 195,739. Ann. N. Y. Acad. Sci. 544: 231–244.PubMedCrossRefGoogle Scholar
  5. Brasseur R, Goormaghtigh E, Ruysschaert J-M, Duquenoy PH, Marichal P, Vanden Bossche H (1991) Lipid-itraconazole interaction in lipid model membranes. J. Pharm. Pharmacol. 43: 167–171.PubMedCrossRefGoogle Scholar
  6. Buttke TM, Bloch K (1981) Utilization and metabolism of methyl-sterol derivatives in the yeast mutant strain GL7. Biochemistry 20: 3267–3272.PubMedCrossRefGoogle Scholar
  7. Chen C, Kalb VF, Turi TG, Loper JC (1988) Primary structure of the cytochrome P-450 lanosterol 14α-demethylase gene from Candida tropicalis. DNA 7: 617–626.PubMedCrossRefGoogle Scholar
  8. Chiew YY, Sullivan PA, Shepherd MG (1984) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can. J. Biochem. 60: 15–20.Google Scholar
  9. Chung B-C, Picado-Leonard J, Haniu M, Bienkowski M, Hall PF, Shively J E, Miller WL (1987). Cytochrome P450C17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc. Nat. Acad. Sci. USA, 84: 407–411.PubMedCrossRefGoogle Scholar
  10. Cooper RA, Strauss JF (1984) Regulation of cell membrane cholesterol. In: Shinitzky M (ed.) Physiology of membrane fluidity, vol.1, CRC Press, Inc., Boca Raton, Florida, pp. 73–97.Google Scholar
  11. Dahl C, Dahl J (1988) Cholesterol and cell function. In: Yeagle PL (ed.), Biology of cholesterol, CRC Press, Boca Raton, Florida, pp. 147–171.Google Scholar
  12. Ferguson JB, Bloch K (1977) Purification and properties of a soluble protein activation of rat liver squalene epoxidase. J. Biol. Chem. 252: 5381–5385.PubMedGoogle Scholar
  13. Fischer RT, Trzaskos JM. Magolda RL, Ko SS, Brosz CS, Larsen B (1991) Lanosterol 14α-demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J. Biol. Chem. 266:6124–6132.Google Scholar
  14. Fryberg M, Oehlschlager AC, Unrau AM (1976) Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch. Biochem. Biophys. 173: 171–177.PubMedCrossRefGoogle Scholar
  15. Galley J, De Kruijff (1982) Correlation between molecular shape and hexagonal HII phase promoting ability of sterols. FEBS Lett. 143: 133–143.CrossRefGoogle Scholar
  16. Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, Funke PT (1987) Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob. Ag. Chem. 31: 46–51.Google Scholar
  17. Gottlieb D, Knaus RJ, Wood SG (1979) Differences in the sterol synthesizing pathways of sterol-producing and non-sterol producing fungi. Phytopathol. 68: 1168–1169.CrossRefGoogle Scholar
  18. Graham-Lorence S, Khalil MW, Lorence MC, Mendelson CR, Simpson ER (1991) Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis. J. Biol. Chem. 266: 11939–11946.PubMedGoogle Scholar
  19. Harada N (1988). Cloning of a complete cDNA encoding human aromatase: immunochemical identification and sequence analysis. Biochem. Biophys. Res. Comm. 156:725–732.PubMedCrossRefGoogle Scholar
  20. Horie M, Tsuchiya Y, Hayashi M, Iida Y, Iwasawa Y, Nagata Y, Sawasaki Y, Fukuzumi H, Kitani K, Kamei T (1990) NB-598: a potent competitive inhibitor of squalene epoxidase. J. Biol. Chem. 265: 18075–18078.PubMedGoogle Scholar
  21. Ishida NY, Aoyama Y, Hatanaka R, Oyama Y, Imajo S, Ishiguro M, Oshima T, Nakazato H, Noguchi T, Maitra US, Mohan VP, Sprinson DB, Yoshida Y (1988) A single amino acid substitution converts cytochrome P45014DM to an inactive form, cytochrome P450SG1: complete primary structures deduced from cloned DNAs. Biochem. Biophys. Res. Commun. 155: 317–323.PubMedCrossRefGoogle Scholar
  22. Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper LC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6: 529–537PubMedCrossRefGoogle Scholar
  23. Kelly SL, Kenna S, Bligh HFJ, Watson PF, Stansfield I, Ellis SW, Kelly DE (1990) Lanosterol to ergosterol-enzymology, inhibition and genetics. In: Kuhn PJ, Trinci AP, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi, Springer-Verlag, Berlin, pp.223–243.CrossRefGoogle Scholar
  24. Kelly SL, Rowe J, Watson PF (1991) Molecular genetic studies on the mode of action of azole antifungal agents. Biochem. Soc. Transact. 19: 796–798.Google Scholar
  25. Kerkenaar, A (1987) The mode of action of dimethylmorpholines. In: Fromtling JR (ed) Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents, JR Prous Science Publishers, S.A, Barcelona, pp. 523–542.Google Scholar
  26. Kerkenaar A and Barug D (1984) Fluorescence microscope studies of Ustilago maydis and Penicillium italicum after treatment with imazalil or fenpropimorph. Pestic Sci. 15: 199–205.CrossRefGoogle Scholar
  27. Kerkenaar A, van Rossum JM, Versluis GG and Marsman JW (1984) Effect of fenpropimorph and imazalil on sterol biosynthesis in Penicillium italicum. Pestic Sci. 15: 177–187.CrossRefGoogle Scholar
  28. Kerridge D, Fasoli M, Wayman FJ (1988) Drug resistance in Candida albicans and Candida glabrata. Ann. N. Y. Acad. Sci. 544: 245–259.PubMedCrossRefGoogle Scholar
  29. Kerridge D, Van den Bossche H (1990) Drug discovery: a biochemist’s approach. In: Ryley JF (ed) Chemotherapy of fungal infections, Springer Verlag, Berlin, pp 31–76.Google Scholar
  30. Langeake P, Kuhn PJ, Wade M (1983) The mode of action of systemic fungicides. In: Hutson DH, Roberts TR (eds) Progress on pesticide biochemistry and toxicology, vol 3, John Wiley & Sons Ltd, Chicester, England, pp. 1–109.Google Scholar
  31. Long MT, Steel CC, Mercer EI (1988) Location of squalene accumulation and physiological effects of ergosterol depletion in naftifine-grown yeast. Biochem. Soc. Transact. 16: 1044–1045.Google Scholar
  32. Margalith PZ (1976) Steroid microbiology. Charles C Thomas, Springfield, p. 99.Google Scholar
  33. Marcireau C, Guilloton M, Karst F (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob. Ag. Chemother. 34: 989–993.Google Scholar
  34. Marichal P, Van den Bossche H, Moereels H, Brasseur R (1990) Mode of insertion of azole antifungals and sterols in membranes. In: Brasseur R (ed) Molecular description of biological membranes by computer aided conformational analysis, vol 2, CRC Press, Boca Raton, pp. 27–42.Google Scholar
  35. Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci. 15: 133–155.CrossRefGoogle Scholar
  36. Mercer EI (1988) The mode of action of morpholines. In: Berg D, Plempel M (eds). Sterol biosynthesis inhibitors. Pharmaceutical and Agrochemical aspects, Ellis Horwood Ltd., Chichester, England, pp. 120–150.Google Scholar
  37. Mercer EI (1991) Morpholine antifungals and their mode of action. Biochem. Soc. Transact. 19: 788–793.Google Scholar
  38. Moereels H, De Bie L, Tollenaere JP (1990) CGEMA and VGAP: a colour graphics editor for multiple alignment using a variable gap penalty. Application to the muscarinic acethylcholine receptor. J. Computer-aided Mol. Des. 4: 131–145.CrossRefGoogle Scholar
  39. Nes WR, Sekula BC, Nes WD, Adler JH (1978) The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253: 6218–6225.PubMedGoogle Scholar
  40. Nes WD, Saunders GA, Heftman E (1982) Role of steroids and triterpenoids in the growth and reproduction of Phytophthora cactorum. Lipids 17: 178–183.CrossRefGoogle Scholar
  41. Ono T, Nakazono K, Kosaka H (1982) Purification and partial characterization of squalene epoxidase from rat liver microsomes. Biochim. Biophys. Acta 709:84–90.PubMedCrossRefGoogle Scholar
  42. Ono T, Ozasa S, Hasagawa F, Imai Y (1977) Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim. Biophys. Acta 486:401–407.PubMedGoogle Scholar
  43. Orth AB, Henry MJ, Sisler HD (1990) Mechanism of resistance to terbinafine in two isolates of Ustilago maydis. Pestic Biochem. Physiol. 37: 182–191.CrossRefGoogle Scholar
  44. Orth AB, Sisler HD (1990) Mode of action of terbinafine in Ustilago maydis and characterization of resistant mutants. Pestic Biochem. Physiol. 37: 53–63.CrossRefGoogle Scholar
  45. Paltauf F, Daum G, Zuder G, Högenauer G, Schulz G, Seidl G (1982) Squalene and ergosterol biosynthesis in fungi treated with naftifine, a new antimycotic agent. Biochim. Biophys. Acta 712: 268–273.Google Scholar
  46. Parks LW, Bottema DK, Rodriguez RJ (1984) Physical and enzymatic function of ergosterol in fungal membranes. In: Nes WD, Fuller G, Tsai K-S (eds) Isopentenoids in plants. Biochemistry and function. Marcel Dekker, Inc, pp 433-452.Google Scholar
  47. Pesti M, Campbell JM, Peberdy JF (1981) Alteration of ergosterol content and chitin synthase activity in Candida albicans. Current Microbiol. 5: 187–190.CrossRefGoogle Scholar
  48. Polak A (1988) Mode of action of morpholine derivatives. Ann. N. Y. Acad. Sci. 544: 221–228.PubMedCrossRefGoogle Scholar
  49. Polak A (1990) Mode of action studies. In: Ryley JF (ed) Chemotherapy of fungal infections, Springer Verlag, Berlin, pp 152–182.Google Scholar
  50. Polak A, Zaug M (1990) Amorolfine. In: Ryley JF (ed) Chemotherapy of fungal infections, Springer Verlag, Berlin, pp. 505–521.Google Scholar
  51. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  52. Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta 837: 336–343.PubMedGoogle Scholar
  53. Ryder NS (1987) Squalene epoxidase as the target of antifungal allylamines. Pestic Sci. 21: 281–288.CrossRefGoogle Scholar
  54. Ryder NS (1988a) Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann. N. Y. Acad. Sci. 544: 208–220.PubMedCrossRefGoogle Scholar
  55. Ryder NS (1988b) Mode of action of allylamines. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors, Ellis Horwood Ltd, Chichester, England, pp. 151–167Google Scholar
  56. Ryder NS (1991) Squalene epoxidase as a target for the allylamines. Biochem. Soc. Transact 19: 769–774.Google Scholar
  57. Sancholle M, Weete JD, Montant C (1984) Effects of triazoles on fungi: I. growth and cellular permeability. Pestic Biochem. Physiol. 21: 31–44.CrossRefGoogle Scholar
  58. Sisler HD, Walsh RC, Ziogas BN (1983) Ergosterol biosynthesis: a target of fungitoxic action. In: Matsunaka S, Hutson DH, Murphy SD (eds) Pesticide chemistry: Human welfare and the environment Vol 3, Mode of action, metabolism and toxicology. Pergamon Press, New York, pp 129–134.Google Scholar
  59. Sisler HD, Buchman-Orth AM (1990) Oxygen radical generation as a basis of fungitoxicity. In: Tagugungs Bericht No. 291, Systemic fungicides and antifungal compounds. Akademie der Landwirtschaftswissenschaften, Berlin, pp. 17–23.Google Scholar
  60. Steel CC, Baloch RI, Mercer EI, Baldwin BC (1989) The intracellular location and physiological effects of abnormal sterols in fungi grown in the presence of morpholine and functionally related fungicides. Pestic Biochem. Physiol. 33: 101–111.CrossRefGoogle Scholar
  61. Taylor FR, Rodriguez RJ, Parks LW (1983) Requirement for a second sterol biosynthesis mutation for the viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae. J. Bacteriol. 155: 64–68.PubMedGoogle Scholar
  62. Trzaskos J, Kawata S, Gaylor JL (1986) Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14α-methyl demethylase cytochrome P-450 from hepatic microsomes. J. Biol. Chem. 261: 14651–14657.PubMedGoogle Scholar
  63. Unger BP, Gunsalus IC, Sligar SG (1986). Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli. J. Biol. Chem. 261: 1158–1163.Google Scholar
  64. Van Cutsem J (1989) The in vitro antifungal spectrum of itraconazole. Mycoses 32 (suppl 1): 7–13.PubMedGoogle Scholar
  65. Van den Bossche H (1974) Biochemical effects of miconazole on fungi-I. Effects on the uptake and/or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem. Pharmacol. 23: 887–899.PubMedGoogle Scholar
  66. Van den Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In: McGinnis MR (ed) Current topics in medical mycology, vol 1, Springer Verlag, New York, pp. 313–351.CrossRefGoogle Scholar
  67. Van den Bossche H (1988) Mode of action of pyridine, pyrimidine and azole antifungals. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors, Ellis Horwood Ltd, Chichester, England, pp. 79–119.Google Scholar
  68. Van den Bossche H (1990) Importance and role of sterols in fungal membranes. In: Kuhn PJ, Trinci AP, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi, Springer-Verlag, Berlin, pp. 135–157.CrossRefGoogle Scholar
  69. Van den Bossche H (1991) Anti-Candida drugs-Mechanisms of action. In; Tümbay E, Seelliger HPR, Ang Ö (eds) Candida and candidamycosis, Plenum Press, New York, pp. 82–95.Google Scholar
  70. Van den Bossche H, Willemsens G, Van Cutsem J (1978) Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem. Biol. Interact. 21: 59–78.PubMedCrossRefGoogle Scholar
  71. Van den Bossche H, Willemsens G, Cools W, Cornelissen F, Lauwers WF, Van Cutsem J (1980) In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob. Ag. Chemother. 17: 922–928.Google Scholar
  72. Van den Bossche H, Ruysschaert J-M, Defrise-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem. Pharmacol. 31: 2609–2617.PubMedCrossRefGoogle Scholar
  73. Van den Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W (1984a) Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: the inhibition of isoprenoid biosynthesis. Pestic Sci. 15: 188–198.CrossRefGoogle Scholar
  74. Van den Bossche H, Willemsens G, Marichal P, Cools W, Lauwers W (1984b) The molecular basis for the antifungal activities of N-substituted azole derivatives, focus on R 51211. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents, Cambridge University Press, Cambridge, pp. 321–341.Google Scholar
  75. Van den Bossche H, Willemsens G, Marichal P (1987a) Anti-Candida drugs-The biochemical basis for their activity. CRC Crit. Rev. Microbiol. 15: 57–72.CrossRefGoogle Scholar
  76. Van den Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene M-C, Lauwers W, Janssen PAJ (1987b) Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plants and mammalian cells. Pestic Sci. 21: 289–306.CrossRefGoogle Scholar
  77. Van den Bossche H, Marichal P, Gorrens J, Geerts H, Janssen PAJ (1988a) Mode of action studies-basis for the search of new antifungals. Ann. N. Y. Acad. Sci. 544: 191–207.CrossRefGoogle Scholar
  78. Van den Bossche H, Marichal P, Geerts H, Janssen PAJ (1988b) The molecular basis for itraconazole’s activity against Aspergillus fumigatus. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis, Plenum Press, New York, pp. 171–197.Google Scholar
  79. Van den Bossche H, Marichal P, Gorrens J, Coene M-C, Willemsens G, Bellens D, Roels I, Moereels H, Janssen PAJ (1989) Biochemical approaches to selective antifungal activity. Focus on azole antifungals. Mycoses 32 (suppl 1): 35–52.Google Scholar
  80. Van den Bossche H, Marichal P, Willemsens G, Bellens D, Gorrens J, Roels I, Coene M-C, Le Jeune L, Janssen PAJ (1990a) Saperconazole: a selective inhibitor of the cytochrome P-450-dependent ergosterol synthesis in Candida albicans Aspergillus fumigatus and Trichophyton mentagrophytes. Mycoses 33: 335–352.Google Scholar
  81. Van den Bossche H, Marichal P, Gorrens J, Bellens D, Coene M-C, Lauwers W, Le Jeune L, Moereels H, Janssen PAJ (1990b) Mode of action of antifungals of use in immuno-compromised patients. Focus on Candida glabrata and Histoplasma capsulation. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G, Van Cutsem J, Drouhet E, Dupont B (eds) Mycoses in AIDS patients, Plenum Press, New York, pp. 223–243.CrossRefGoogle Scholar
  82. Van den Bossche H, Marichal P, Gorrens J, Bellens D, Moereels H, Janssen PAJ (1990c) Mutation in cytochrome P-450-dependent 14α-demethylase results in decreased affinity for azole antifungals. Biochem. Soc. Transact. 18: 56–59.Google Scholar
  83. Van den Bossche H, Marichal P (1991) Mode of action of anti-Candida drugs: focus on terconazole and other ergosterol biosynthesis inhibitors. Am. J. Obstet. Gynecol. 165: 1193–1199.Google Scholar
  84. Van den Bossche H, Moereels H, Janssen PAJ (1991) Role of cytochrome P450 in the anabolism and catabolism of endobiotics. In: Arinç E, Schenkman JB, Hodgson E (eds) Molecular aspects of monooxygenases and bioactivation of toxic compounds, Plenum Press, New York, pp. 305–330.Google Scholar
  85. Warnock DW, Burke J, Cope NJ, Johnson EM, von Fraunhofer NA, Williams EW (1988) Fluconazole resistance in Candida glabrata. The Lancet, December 3, 1310.Google Scholar
  86. Yamaguchi, H (1977) Antagonistic action of lipid components of membranes from C. albicans and variuos other lipids on two imidazole antimycotics. Antimicrob. Ag. Chem. 12: 16–25.Google Scholar
  87. Yoshida Y (1988) Cytochrome P450 of fungi: primary target for azole antifungal agents. In: McGinnis MR (ed) Current topics in medical mycology, vol 2, Springer Verlag, New York, pp. 388–418.CrossRefGoogle Scholar
  88. Yoshida Y, Aoyama Y, Nishino T, Katsuki H, Maitra US, V.P. Mohan VP, Sprinson DB (1985) Spectral properties of a novel cytochrome P-450 of a Saccharomyces cerevisiae mutant SG1. A cytochrome P-450 species having a nitrogenous ligand trans to thiolate. Biochem. Biophys. Res. Comm. 127: 623–628.PubMedCrossRefGoogle Scholar
  89. Yoshida Y, Aoyama Y (1986) Interaction of azole fungicides with yeast cytochrome P-450 which catalyzes lanosterol 14α-demethylation, In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents, Elsevier Science Publishers, Amsterdam, pp. 123–134.Google Scholar
  90. Yoshida Y, Aoyama Y (1991) Cytochromes P450 in ergosterol biosynthesis. In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation, vol 4, Microbial and plant cytochromes P450: biochemical characteristics genetic engineering and practical applications, Akademie Verlag, Berlin, pp. 127–148.Google Scholar
  91. Ziogas BN, Oesterhelt G, Masner P, Steel C, Furter R (1991) Fenpropimorph: a three site inhibitor of ergosterol biosynthesis in Nectria haematococcus var. cucurbitae. Pestic Biochem. Physiol. 39: 74–83.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Moereels
    • 1
  • H. Vanden Bossche
    • 2
  • P. Marichal
    • 2
  1. 1.Theoretical Medicinal ChemistryJanssen Research FoundationBeerseBelgium
  2. 2.Departments of Comparative BiochemistryJanssen Research FoundationBeerseBelgium

Personalised recommendations