Alu Repeats and Evolution of the HLA-DQA1 Locus

  • Giovanna Del Pozzo
  • Maria Neve Ombra
  • Carmela Perfetto
  • Andrea Lerma De Barbaro
  • Monica Autiero
  • Antonella Maffei
  • John Guardiola
Part of the NATO ASI Series book series (volume 59)


The HLA-DQA1 gene is highly polymorphic in the coding as well as in the non-coding regions. Analysis of polymorphisms at the DNA level by use of restriction enzymes shows that multiple restriction sites are simultaneously affected, thus suggesting that insertion/deletion mechanisms might be in part responsible for the generation of genetic variability at this locus. To study in detail this phenomenon we have cloned and sequenced DNA fragments derived from the HLA-DQA1 locus isolated from different haplotypes. This work has provided clues concerning DNA polymorphisms located in the 5′ flanking region of the gene. Generation of polymorphism seems to be related to the presence of a cluster of repetitive elements of the Alu family; the possible influence of polymorphisms of the regulatory region on the control of gene activity is discussed. Furthermore, we report indications that Alu repeats can be used as tags to study the divergence of HLA-DQA1 and of its alleles from the strictly related HLA-DQA2 gene.


Repetitive Element Schistosomal Antigen Alpha Chain Gene Multiple Restriction Site Short Terminal Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accolla, R.S., Auffray, C., Singer, D., and Guardiola, J.: The molecular biology of MHC. Immunol Today 12: 97–99 1991PubMedCrossRefGoogle Scholar
  2. Accolla, R.S. and Guardiola, J.: Regulation of human MHC class II genes. J Immunol Res 1: 191–198, 1989Google Scholar
  3. Auffray, C., Ben-Nun, A., Roux-Dosseto, M., Germain, R.N., Seidman, J.G., and Strominger, J.L.: Polymorphism and complexity of the human DC and murine I-A alpha chain genes. EMBO J 2: 121–124, 1983PubMedGoogle Scholar
  4. Auffray, C., Lillie, J.W., Korman, A.J., Boss, J.M., Frèchin, N., Guillemot, F. Cooper, J., Mulligan, R.C. and Strominger, J.L.: Structure and expression of the HLA-DQA and -DXA genes: interallelic alternate splicing of the HLA-DXA gene using a retroviral vector. Immunogenetics 26: 63–73, 1987PubMedCrossRefGoogle Scholar
  5. Bell, G.I., Selby, M.J., and Rutter, W.J.: The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35, 1982PubMedCrossRefGoogle Scholar
  6. Benoist, C. and Mathis, D.: Regulation of major histocompatibility complex class II genes: X and Y and other letters of the alphabet. Annu Rev Immunol 8: 681–715, 1990PubMedCrossRefGoogle Scholar
  7. Britten, R.J., Baron, W.F., Stout, D.B., and Davidson, E.H.: Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85: 4770–4774, 1988PubMedCrossRefGoogle Scholar
  8. Cohen, D., Le Gall, I., Marcadet, A., Font, M.-P., J.-M. Lalouel, and Dausset, J.: Clusters of HLA class IIβ restriction fragments describe allelic series. Proc Natl Acad Sci USA 81:7870–7884, 1984PubMedCrossRefGoogle Scholar
  9. Deininger, P.L. and Slagel, V.K.: Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8: 4566–4589, 1988PubMedGoogle Scholar
  10. Del Pozzo, G. and Guardiola, J.: Mummy DNA fragment identified. Nature 339: 431–432, 1989PubMedCrossRefGoogle Scholar
  11. Del Pozzo, G. and Guardiola, J.: A SINE insertion provides information on the divergence of the HLA-DQA1 and HLA-DQA2 genes. Immunogenetics 31: 229–232, 1990PubMedCrossRefGoogle Scholar
  12. Dom, A., Fehling, J.H., Koch, N., Lemeur, M., Gerlinger, P., Benoist, C. and Mathis, D.: B- cell control region at the 5′ end of a MHC class II gene: sequences and factors. Mol Cell Biol 8: 3975–3987, 1988Google Scholar
  13. Economou, E.P., Bergen, A.W., Warren, A.C., and Antonarakis, S.E.: The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci USA 87: 2951–2954, 1990PubMedCrossRefGoogle Scholar
  14. Economu-Pachnis, A. and Tsichlis, P.N.: Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 13: 8379–8387, 1985CrossRefGoogle Scholar
  15. Giles, R.C. and Capra, J.D.: Structure, function and genetics of human MHC class II molecules. Adv Immunol 37: 1–71, 1985PubMedCrossRefGoogle Scholar
  16. Guardiola, J., Maffei, A., Carrel, S., and Accolla, R.S.: Molecular genotyping of the HLA- DQA gene region. Immunogenetics 27: 12–18, 1988PubMedCrossRefGoogle Scholar
  17. Gyllensten, U.B. and Erlich, H.A.: Ancient roots for polymorphism at the HLA-DQA locus in primates. Proc Natl Acad Sci USA 86:9986–9990, 1989PubMedCrossRefGoogle Scholar
  18. Hirayama, K., Matsushita, S., Kikuchi, I., Iuchu, M., Ohta, N., and Sasazuki, T.: HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 327: 426–430, 1987PubMedCrossRefGoogle Scholar
  19. Horn, G., Bugawan, T.L., Long, C.M., and Erlich, H.A.: Allelic sequence variation of the HLA-DQ loci: relationship to serology and to insulin-dependent diabetes susceptibility. Proc Natl Acad Sci USA 85: 6012–6016, 1988PubMedCrossRefGoogle Scholar
  20. Jurka, J. and Smith, T. A.: fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778, 1988PubMedCrossRefGoogle Scholar
  21. Le Gall, I., Marcadet, A., Font, M.-P., Auffray, C., and Strominger, J.L., Lalouel, J.M., Dausset, J. and Cohen, D.: Exuberant restriction fragment length polymorphism associated with the DQA chain gene and the DXA chain gene. Proc Natl Acad Sci USA 82: 5433–5436, 1985PubMedCrossRefGoogle Scholar
  22. Lehrman, M.A., Russell, D.W., Goldstein, J.L., and Brown, M.S.: Exon-Alu recombination deletes 5 kilobases from low density lipoprotein receptor gene, producing a null phenotype in familial hypercholesterolemia. Proc Natl Acad Sci USA 83: 3679–3683, 1986PubMedCrossRefGoogle Scholar
  23. McConnell, T.J., Talbot, W.S., McIndoe, R.A., and Wakeland, E.K.: The origin of MHC class II gene polymorphism within the genus Mus. Nature 332: 651–654, 1988PubMedCrossRefGoogle Scholar
  24. Moriuchi, J., Moriuchi, T. and Silver, J.: Nucleotide sequence of an HLA-DQA clone derived from a DRw9 cell line: genetic and evolutionary implications. Proc Natl Acad Sci USA 82: 3420–3424, 1985PubMedCrossRefGoogle Scholar
  25. Morse, B., Rotherg, P.G., South, V.J., Spandorfer, J.M., and Astrin, S.M.: Insertional mutagenesis of the myc locus by a LINE sequence in a human breast carcinoma. Nature 333: 87–90. 1988PubMedCrossRefGoogle Scholar
  26. Olio, R. and Rougeon, F. Gene conversion and polymorphism: generation of mouse immunoglobulin 2b chain alleles. Cell 32: 515–523, 1983CrossRefGoogle Scholar
  27. Ombra, M.N., Del Pozzo, G., Perfetto, C., Maffei, A., and Guardiola, J.: Effect of the AIR-1 locus on the activation of an enhancerless HLA-DQA1 promoter. Immunogenetics 31: 368–376, 1990PubMedCrossRefGoogle Scholar
  28. Ono, S.J., Bazil, V., Sugarawa, M., and Strominger J.L.: An isotype-specific trans-acting factor defective in a mutant B cell line that expresses HLA-DQ, but not -DR or - DP. J Exp Med 173: 629–637, 1991PubMedCrossRefGoogle Scholar
  29. Ottolenghi, S. and Giglioni, B.: The deletion in a type of thalassaemia begins in an inverted Alul repeat. Nature 300: 770–771, 1983CrossRefGoogle Scholar
  30. Pääbo, S.: Molecular cloning of ancient egyptian mummy DNA. Nature 314: 644–645, 1985PubMedCrossRefGoogle Scholar
  31. Rogers, J.H.: Origin and evolution of retroposons. Part 2: The structure and evolution of retroposons. Intern Rev Cytol 93: 231–279, 1985Google Scholar
  32. Safer, J.D. and Thurston, S.J.: A negative element with properties similar to those of enhancer is contained within an Alu sequence. Mol Cell Biol 9: 355–364, 1990Google Scholar
  33. Sasazuchi, T.: Immunological recognition. Cold Spring Harbor Symp Quant Biol. 54: 69–74, 1989Google Scholar
  34. Schuler, L.A., Weber, J.L., and Gorski, J.: Polymorphism near the rat prolactin gene caused by insertion of an Alu-like element Nature 305: 159–160, 1983PubMedCrossRefGoogle Scholar
  35. Spielman, R.S., Lee, J., Bodmer, W.F., and Trowsdale, J. Six HLA-D region alpha chain genes on human chromosome 6: polymorphisms and association of DC related sequences with DR types. Proc Natl Acad Sci USA 81: 3461–3465, 1984PubMedCrossRefGoogle Scholar
  36. Stoppa-Lyonnet, D., Carte, P.E., Meo, T., and Tosi, M.: Cluster of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87: 1551–1555, 1990PubMedCrossRefGoogle Scholar
  37. Trowsdale, J., Lee J., Carey, J., Grosveld, F., Bodmer, J.: and Bodmer, W. Sequences related to HLA-DRA chain on chromosome 6: restriction enzyme polymorphisms detected with DCA chain probes. Proc Natl Acad Sci USA 80: 1972–1976, 1983PubMedCrossRefGoogle Scholar
  38. Widera, G. and Flavell, R.A.: The nucleotide sequence of I-Eßb immune response genes: evidence for gene conversion events in class II genes of the major histocompatibility complex. EMBO J 3: 1221–1225, 1984PubMedGoogle Scholar
  39. Wu, J., Grindlay, G.J., Bushel, P., Mendelsohn, L., and Allan, M.: Negative regulation of the human epsilon-globin gene by transcriptional interference: role of an Alu repetitive element. Mol Cell Biol 10: 1209–1216, 1990PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Giovanna Del Pozzo
    • 1
  • Maria Neve Ombra
    • 1
  • Carmela Perfetto
    • 1
  • Andrea Lerma De Barbaro
    • 1
  • Monica Autiero
    • 1
  • Antonella Maffei
    • 1
  • John Guardiola
    • 1
  1. 1.The International Institute of Genetics and BiophysicsNaplesItaly

Personalised recommendations