Skip to main content

Reconstruction of Phylogenetic Trees and Evolution of Major Histocompatibility Complex Genes

  • Conference paper
Molecular Evolution of the Major Histocompatibility Complex

Part of the book series: NATO ASI Series ((ASIH,volume 59))

Abstract

There are many different methods of phylogenetic reconstruction for DNA sequence data, and their advantages and disadvantages are discussed by considering various factors such as the constancy of evolutionary rate, extent of sequence divergence, variation in evolutionary rate over the sequence, number of nucleotides examined, number of sequences used, etc. It is shown that the bootstrap method of testing the stability of the branching pattern of a tree is not really accurate in evaluating the probability level of the clustering of a group of sequences and that it sometimes leads to an erroneous conclusion particularly when it is applied to the maximum parsimony method. Nevertheless, it is a useful method for obtaining a rough idea of the stability of the branching pattern of a tree. Application of the neighbor-joining and maximum parsimony bootstrap methods to Gyllensten et al.’s sequence data for the DQB locus alleles from primates confirmed the trans-species polymorphism between humans and gorillas, but the trans-species polymorphism between humans and chimpanzees was ambiguous. However, sequence data for the DQA locus alleles confirmed the trans-species polymorphism among all of the humans, chimpanzees and gorillas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cavalli-Sforza, L.L. and Edwards, A.W.F: Phylogenetic analysis: Models and estimation procedures. Amer J Hum Genet 19: 233–257, 1967

    PubMed  CAS  Google Scholar 

  • Efron, B.: The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia 1982

    Book  Google Scholar 

  • Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17: 368–376, 1981

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J.: Confidence limits on phytogenies: an approach using the bootstrap. Evolution 39: 783–791, 1985

    Article  Google Scholar 

  • Felsenstein, J.: Phylogenies from molecular sequences: Inference and reliability. Ann Rev Genet 22: 521–565, 1988

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416, 1971

    Article  Google Scholar 

  • Fitch, W.M. and Margoliash, E.: Construction of phylogenetic trees. Science 155: 279–284, 1967

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, U.B. and Erlich, H.A.: Ancient roots for polymorphism at the HLA-DQa locus in primates. Proc Natl Acad Sci 86: 9986–9990, 1989

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, U.B., Lashkari, D., and Erlich, H.A.: Allelic diversification at the class II DQB locus of the mammalian major histocompatibility complex. Proc Natl Acad Sci 87: 1835–1839, 1990

    Article  PubMed  CAS  Google Scholar 

  • Klein, J.: Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum Immunol 19: 155–162, 1987

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H.: A statistical test of phylogenies estimated from sequence data. Mol Biol Evol 6: 424–435, 1989

    PubMed  CAS  Google Scholar 

  • McConnell, T.L., Talbot, W.S., McIndoe, R.A., and Wakland, E.K.: The origin of MHC class II gene polymorphism within the genus Mus. Nature 332: 651–654, 1988

    Article  PubMed  CAS  Google Scholar 

  • Nei, M.: Molecular Population Genetics And Evolution, North-Holland, Amsterdam and NewYork 1975

    Google Scholar 

  • Nei, M.: Molecular Evolutionary Genetics. Columbia University Press, New York 1987

    Google Scholar 

  • Nei, M.: Relative efficiencies of different tree-making methods for molecular data. In M.M. Miyamoto and J.L. Cracraft (eds.): Recent advances in Phylogenetic studies of DNA sequences. Oxford University Press. Oxford and New York (submitted 1991)

    Google Scholar 

  • Nei, M. and Hughes, A.L.: Polymorphism and evolution of the major histocompatibility complex loci in mammals. In R.K. Selander, A.G. Clark, and T.S. Whittam (eds.): Evolution at the Molecular Level, pp. 222–247. Sinauer Associates, Sunderland, MA 1991

    Google Scholar 

  • Nei, M., Stephens, J.C., and Saitou, N.: Methods for computing the standard error of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol Biol Evol 2: 66–85, 1985

    PubMed  CAS  Google Scholar 

  • Saitou, N. and Imanishi, T.: Relative efficiencies of the Fitch-Margoliash, maximum- parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol 6: 514– 525, 1989

    CAS  Google Scholar 

  • Saitou, N. and Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425, 1987

    PubMed  CAS  Google Scholar 

  • Sneath, P.H.A. and Sokal, R.R.: Numerical Taxonomy. Freeman, San Francisco 1973

    Google Scholar 

  • Sokal, R.R. and Michener, C.D.: A statistical method for evaluating systematic relationships. University of Kansas Sci Bull 28: 1409–1438, 1958

    Google Scholar 

  • Sourdis, J. and Krimbas, C.: Accuracy of phylogenetic trees estimated from DNA sequence data. Mol Biol Evol 4: 159–166, 1987

    PubMed  CAS  Google Scholar 

  • Sourdis, J. and Nei, M.: Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol Biol Evol 5: 298–311, 1988

    PubMed  CAS  Google Scholar 

  • Tateno, Y., Nei, M., and Tajima, F.: Accuracy of Estimated phylogenetic trees from molecular data: I. Distantly related species. J Mol Evol 18: 387–404, 1982

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nei, M., Rzhetsky, A. (1991). Reconstruction of Phylogenetic Trees and Evolution of Major Histocompatibility Complex Genes. In: Klein, J., Klein, D. (eds) Molecular Evolution of the Major Histocompatibility Complex. NATO ASI Series, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84622-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84622-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84624-3

  • Online ISBN: 978-3-642-84622-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics