Skip to main content

Dynamics of osmotic fluid flow

  • Conference paper
Mechanics of Swelling

Part of the book series: NATO ASI Series ((ASIH,volume 64))

Abstract

The classical thermodynamic treatment of osmotic pressure is quite sufficient to compute most quantities of interest without reference to any molecular model (see, for example, Finkelstein, 1987). However, one’s intuition is always aided by molecular models, and a microscopic picture can be quite useful when thinking about osmotic flow in unfamiliar situations. Therefore, we offer here a surprisingly simple and intuitive molecular model for describing solvent flow driven by osmotically generated pressure gradients. We will show that osmotic pressure arises from the external force on solute particles which is transmitted to the solute by viscous drag. This simple picture enables us to propose a simulation method that can be used to compute the osmotic flows associated with quite complex situations arising in polymer and gel swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15:1–89

    Article  Google Scholar 

  • Doi, M. S. Edwards. (1986). The Theory of Polymer Dynamics. New York: Oxford University Press.

    Google Scholar 

  • Finkeistein, A. (1987). Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality. 4. New York: John Wiley & Sons.

    Google Scholar 

  • Fogelson, A.L., C.S. Peskin (1988). A fast numerical method for solving the three-dimensional Stokes’ equations in the presence of suspended particles. J. Comput. Phys. 79:50–69

    Article  CAS  Google Scholar 

  • Hammel, H. (1979). Forum on osmosis. I. Osmosis: diminished solvent activity or enhanced solvent tension? Amer. J. Physiol. 237:R95–R107

    PubMed  CAS  Google Scholar 

  • Ito, T., M. Yamazaki S. Ohnishi (1989). Poly(ethylene glycol)-induced shrinkage of Sephadex gel. A model system for quantitative analysis of osmoelastic coupling. Biophys J. 56:707–11

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., K.S. Zaner T.P. Stossel (1987). Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J. 51:745–53.

    Article  PubMed  CAS  Google Scholar 

  • Kiil, F. (1989). Molecular mechanisms of osmosis. Amer. J. hysiol. 256:R801–R808

    CAS  Google Scholar 

  • Levitt, D. (1973). Kinetics of diffusion and convection in 3.2Å pores. Exact solution by computer simulation. Biophys. J. 13:

    Google Scholar 

  • Peskin, C. (1990). Analysis of the backward-Euler/Langevin method for molecular dynamics. Comm. Pure Appl. Math. XLIII:599–645

    Article  Google Scholar 

  • Peskin, C.S., T. Schlick (1989). Molecular dynamics by the backward-Euler method. Comm. Pure Appl. Math. XLII:1001–1031

    Article  Google Scholar 

  • Schlick T, C.S. Peskin (1989): Can classical equations simulate quantum-mechanical behavior: a molecular dynamics investigation of a diatomic molecule with a Morse potential. Commun. Pure \& Appl. Math. 42:1141–1163

    Article  Google Scholar 

  • Suzuki, A., M. Yamazaki T. Ito (1989). Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry. 28:6513–8

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T. D. Fillmore (1979). Kinetics of swelling of gels. J. Chem. Phys. 70:1214–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oster, G., Peskin, C.S. (1992). Dynamics of osmotic fluid flow. In: Karalis, T.K. (eds) Mechanics of Swelling. NATO ASI Series, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84619-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84619-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84621-2

  • Online ISBN: 978-3-642-84619-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics