Dynamics of osmotic fluid flow

  • George Oster
  • Charles S. Peskin
Part of the NATO ASI Series book series (volume 64)

Abstract

The classical thermodynamic treatment of osmotic pressure is quite sufficient to compute most quantities of interest without reference to any molecular model (see, for example, Finkelstein, 1987). However, one’s intuition is always aided by molecular models, and a microscopic picture can be quite useful when thinking about osmotic flow in unfamiliar situations. Therefore, we offer here a surprisingly simple and intuitive molecular model for describing solvent flow driven by osmotically generated pressure gradients. We will show that osmotic pressure arises from the external force on solute particles which is transmitted to the solute by viscous drag. This simple picture enables us to propose a simulation method that can be used to compute the osmotic flows associated with quite complex situations arising in polymer and gel swelling.

Keywords

Hydrate Convection Ethylene Glycol Shrinkage Alan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15:1–89CrossRefGoogle Scholar
  2. Doi, M. S. Edwards. (1986). The Theory of Polymer Dynamics. New York: Oxford University Press.Google Scholar
  3. Finkeistein, A. (1987). Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality. 4. New York: John Wiley & Sons.Google Scholar
  4. Fogelson, A.L., C.S. Peskin (1988). A fast numerical method for solving the three-dimensional Stokes’ equations in the presence of suspended particles. J. Comput. Phys. 79:50–69CrossRefGoogle Scholar
  5. Hammel, H. (1979). Forum on osmosis. I. Osmosis: diminished solvent activity or enhanced solvent tension? Amer. J. Physiol. 237:R95–R107PubMedGoogle Scholar
  6. Ito, T., M. Yamazaki S. Ohnishi (1989). Poly(ethylene glycol)-induced shrinkage of Sephadex gel. A model system for quantitative analysis of osmoelastic coupling. Biophys J. 56:707–11PubMedCrossRefGoogle Scholar
  7. Ito, T., K.S. Zaner T.P. Stossel (1987). Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J. 51:745–53.PubMedCrossRefGoogle Scholar
  8. Kiil, F. (1989). Molecular mechanisms of osmosis. Amer. J. hysiol. 256:R801–R808Google Scholar
  9. Levitt, D. (1973). Kinetics of diffusion and convection in 3.2Å pores. Exact solution by computer simulation. Biophys. J. 13:Google Scholar
  10. Peskin, C. (1990). Analysis of the backward-Euler/Langevin method for molecular dynamics. Comm. Pure Appl. Math. XLIII:599–645CrossRefGoogle Scholar
  11. Peskin, C.S., T. Schlick (1989). Molecular dynamics by the backward-Euler method. Comm. Pure Appl. Math. XLII:1001–1031CrossRefGoogle Scholar
  12. Schlick T, C.S. Peskin (1989): Can classical equations simulate quantum-mechanical behavior: a molecular dynamics investigation of a diatomic molecule with a Morse potential. Commun. Pure \& Appl. Math. 42:1141–1163CrossRefGoogle Scholar
  13. Suzuki, A., M. Yamazaki T. Ito (1989). Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry. 28:6513–8PubMedCrossRefGoogle Scholar
  14. Tanaka, T. D. Fillmore (1979). Kinetics of swelling of gels. J. Chem. Phys. 70:1214–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • George Oster
    • 1
  • Charles S. Peskin
    • 2
  1. 1.Departments of Molecular & Cellular Biology, and EntomologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Courant Institute of Mathematical SciencesUSA

Personalised recommendations