Interstitial Fluid Pressure in Control of Interstitial Fluid Volume During Normal Conditions, Injury and Inflammation

  • R. K. Reed
  • H. Wiig
  • T. Lund
  • S. Å. Rodt
  • M.-E. Roller
  • G. Østgaard
Conference paper
Part of the NATO ASI Series book series (volume 64)

Abstract

The interstitial space is the intercellular and extravascular compartment which is present in all tissues and which comprise from a few percent of the total tissue weight in brain to forty percent of the tissue weight in skin (Aukland & Nicolaysen 1981). The fluid contained in this compartment is an ultrafiltrate of plasma and contains proteins and electrolytes.

Keywords

Hydrate Filtration Albumin Serotonin Dehydration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arturson G, Meilander S (1964) Acute changes in capillary filtration and diffusion in experimental burn injury. Acta Physiol Scand 62: 457–463PubMedCrossRefGoogle Scholar
  2. Aschheim E, Zweifach BW (1962) Quantitative studies of protein and water shifts during inflammation. Am J Physiol 202: 554–558PubMedGoogle Scholar
  3. Aukland K, Nicolaysen G (1981) Interstitial fluid volume: Local regulatory mechanisms. Physiol Rev 61: 556–643PubMedGoogle Scholar
  4. Brace RA, Guyton AC (1979). Interstitial fluid pressure: Capsule, free fluid, gel fluid and gel absorption pressure in subcutaneous tissue. Microvasc Res 18: 217–228PubMedCrossRefGoogle Scholar
  5. Guyton AC, Granger HJ, Taylor AE (1971) Interstitial fluid pressure. Physiol Rev 51: 527–563PubMedGoogle Scholar
  6. Koller M-E, Reed RK (1990) Increased negative interstitial fluid pressure generates airway mucosal edema during dextran- anaphylaxis in the rat. Physiologist 33: A100Google Scholar
  7. Leape LL (1970) Initial changes in burns: tissue changes in burned and unburned skin of rhesus monkeys. J Trauma 10: 488–492PubMedCrossRefGoogle Scholar
  8. Lund T, Wiig H, Reed RK (1988) Acute postburn edema: role of strongly negagative interstitial fluid pressure. Am J Physiol 255 (Heart Circ Physiol 24): H1069–H1074PubMedGoogle Scholar
  9. Lund T, Onarheim H, Wiig H, Reed RK (1989) Mechanisms behind increased dermal imbibition pressure in acute burn edema. Am J Physiol 256 (Heart Circ Physiol 25): H940–H948, 1989PubMedGoogle Scholar
  10. Meyer FA (1983) Macromolecular basis of globular protein exclusion and of swelling pressure in loose connective tissue (umbilical cord). Biochim Biophys Acta 755: 388–399PubMedCrossRefGoogle Scholar
  11. Reed RK, Johansen S, Noddeland H (1985). Turnover rate of interstitial albumin in rat skin and skeletal muscle. Acta Physiol Scand 125: 711–718PubMedCrossRefGoogle Scholar
  12. Reed RK, Rodt SÅ (1991) Increased negativity of interstitial fluid pressure during the onset stage of inflammatory edema in rat skin. Am J Physiol 260 (Heart Circ 29): H1985–H1991PubMedGoogle Scholar
  13. Reed RK, Wiig H (1981) Compliance of the interstitial space in rats. I. Studies on hindlimb skeletal muscle. Acta Physiol Scand 113: 297–305PubMedCrossRefGoogle Scholar
  14. Rodt SÅ, Reed RK (1990) Increased negativity of interstitial fluid pressure (IFP) in skin during development of edema following subdermal injection of carageenan. Int J Microcirc Clin Exper 9 (Suppl 1): 159Google Scholar
  15. Rodt SÅ, Wiig H, Reed RK (1990) Increased negativity of interstitial fluid pressure contributes to development of oedema in rat skin following application of xylene. Acta Physiol Scand 140: 581–586PubMedCrossRefGoogle Scholar
  16. Schwartz LB, Austen KF (1984) Structure and function of the chemical mediators of mast cells. In: Progress in Allergy, Mast cell activation and Mediator release. Ed. Ishizaka K. Karger Basel, vol 34. pp. 271–321CrossRefGoogle Scholar
  17. Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Handbook of Physiology, Section 2: The cardiovascular System, Volume IV, Microcirculation, Part 1. Eds: Renkin EM and Michel. CC. Bethesda, Maryland: American Physiological Society, pp. 467–520Google Scholar
  18. Wiig H (1985) Comparison of methods for measurement of interstitial fluid pressure in cat skin/subcutis and muscle. Am J Physiol 249 (Heart Circ Physiol 18): H929–H944PubMedGoogle Scholar
  19. Wiig H (1990) Evaluation of methodologies for measurement of interstitial fluid pressure (Pj): Physiological implications of recent Pt data. Crit Rev Biomed Eng 18: 27–54PubMedGoogle Scholar
  20. Wiig H, Reed RK (1981) Compliance of the interstitial space in rats. II. Studies on skin. Acta Physiol Scand 113: 307–315PubMedCrossRefGoogle Scholar
  21. Wiig H, Reed RK (1985) Interstitial compliance and transcapillary Starling pressures in cat skin and skeletal muscle. Am J Physiol 248 (Heart Circ Physiol 17): H666–H673PubMedGoogle Scholar
  22. Wiig H, Reed RK (1987) Volume-pressure relationship (compliance) of interstitium in dog skin and muscle. Am J Physiol 253 (Heart Circ Physiol 22): H291–H298PubMedGoogle Scholar
  23. Wiig H, Reed RK, Aukland K (1987) Measurement of interstitial fluid pressure in dogs: evaluation of methods. Am J Physiol 253 (Heart Circ Physiol 22): H283–H290PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. K. Reed
    • 1
  • H. Wiig
    • 1
  • T. Lund
    • 1
  • S. Å. Rodt
    • 1
  • M.-E. Roller
    • 1
  • G. Østgaard
    • 1
  1. 1.Department of PhysiologyUniversity of BergenBergenNorway

Personalised recommendations