From Glycogen Metabolism to Cell Swelling

  • Louis Hue
  • Arnaud Baquet
  • Alain Lavoinne
  • Alfred J. Meijer
Conference paper
Part of the NATO ASI Series book series (volume 64)

Abstract

Our interest in the mechanics of swelling is recent and has arisen quite unexpectedly from the study of the control of glycogen metabolism in liver. Serendipity brought us to this promising field which we have explored and are still discovering with the zeal of a novice. This chapter summarizes our path from glycogen metabolism to cell swelling

Keywords

Respiration Serine Proline Angiotensin Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker-Grunwald, T. (1983) Potassium permeability and volume control in isolated rat hepatocytes. Biochim. Biophys. Acta, 731, 239–242PubMedCrossRefGoogle Scholar
  2. Baquet, A., Hue, L., Meijer, A.J., van Woerkom, G.M. & Plomp, P.J.A.M. (1990) Swelling of rat hepatocytes stimulates glycogen synthesis. T. Biol. Chem. 265, 955–959.Google Scholar
  3. Baquet, A., Lavoinne, A. & Hue, L. (1991a) Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. L, 273, 57–2Google Scholar
  4. Baquet, A., Meijer, A.J. & Hue, L. (1991b) Hepatocytes swelling increases inositol 1,4,5-trisphosphate, calcium and cyclic AMP concentration but antagonizes phosphorylase activation by Ca++-dependent hormones. FEBS Lett., 278, 103–106PubMedCrossRefGoogle Scholar
  5. Baquet, A., Maisin, L. & Hue, L. (1991c) Swelling of rat hepatocytes activates acetyl-CoA carboxylase in parallel to glycogen synthase. Biochem. T., in press;Google Scholar
  6. Bontemps, F., Hue, L. & Hers, H.G. (1978) Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem. T. 174, 603–611Google Scholar
  7. Boyd, M.E., Albright, E.B., Foster, D.W. & McGarry, J.D. (1981) In vitro reversal of the fasting state of liver metabolism in the rat. T. Clin. Invest. 68, 142–152.CrossRefGoogle Scholar
  8. Carabaza, A., Ricart, M.D., Mor, A., Guinovart, J.J. & Ciudad, C.J. (1990) Role of AMP on the activation of glycogen synthase and phosphorylase by adenosine, fructose, and glutamine in rat hepatocytes. T. Biol. Chem. 265, 2724–2732.Google Scholar
  9. Chen, K.S. & Lardy, H.A. (1985) Multiple requirements for glycogen synthesis by hepatocytes isolated from fasted rats. I. Biol. Chem. 260, 14683–14688Google Scholar
  10. Cohen, P. & Hardie, D.G. (1991) The actions of cyclic AMP on biosynthetic processes are mediated indirectly by cyclic AMP-dependent protein kinase. Biochim. Biophys. Acta, in press.Google Scholar
  11. Geelen, M.J.H., Pruden, E.L. & Gibson, D.M. (1977) Restoration of glycogenosis in hepatocytes from starved rats. Life Sci. 20, 1027–1034.PubMedCrossRefGoogle Scholar
  12. Golden, S., Wals, P.A., Okajima, F. & Katz, J. (1979) Glycogen synthesis by hepatocytes from diabetic rats. Biochem. T. 182, 727–734Google Scholar
  13. Hallbrucker, C., vom Dahl, S., Lang, F. & Haussinger, D. (1991) Control of hepatic proteolysis by amino acids. Eur. T. Biochem. 197, 717–724.CrossRefGoogle Scholar
  14. Häussinger, D., Lang, F., Bauers, K. & Gerok, W. (1990a) Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur. T. Biochem. 188, 689–695CrossRefGoogle Scholar
  15. Häussinger, D., Lang, F., Bauers, K. & Gerok, W. (1990b) Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur. T. Biochem. 193, 891–898CrossRefGoogle Scholar
  16. Häussinger, D., HaUbrucker, C., vom Dahl, S., Lang, F. & Gerok, W. (1990c) Cell swelling inhibits proteolysis in perfused rat liver. Biochem. T. 272, 239–242Google Scholar
  17. Hazama, A. & Okada, Y. (1990) Involvement of Ca2+-induced Ca2+ release in the volume regulation of human epithelial cells exposed to a hypotonic medium. Biochem. Biophys. Res. Commun. 167, 287–293PubMedCrossRefGoogle Scholar
  18. Hems, D.A., Whitton, P.D., & Taylor, E.A. (1972) Glycogen synthesis in the perfused liver of the starved rat. Biochem. T. 129, 529–538Google Scholar
  19. Hers, H.G. (1976) The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45, 167–189PubMedCrossRefGoogle Scholar
  20. Hoffmann, E.K. & Simonsen, L.O. (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69, 315–382.PubMedGoogle Scholar
  21. Howard, R.B. & Widder, D.J. (1976) Substrate control of glycogen levels in isolated hepatocytes from fed rats. Biochem. Biophys. Res. Commun. 68, 262–269PubMedCrossRefGoogle Scholar
  22. Hue, L., Bontemps, F. & Hers, H.G. (1975) The effect of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem. J. 152, 105–114.PubMedGoogle Scholar
  23. Katz, J., Wals, P.A., Golden, S. & Rognstad, R. (1975) Recycling of glucose by rat hepatocytes. Eur. J. Biochem. 60, 91–101.PubMedCrossRefGoogle Scholar
  24. Katz, J., Golden, S. & Wals, P.A. (1976) Stimulation of hepatic glycogen synthesis by amino acids. Proc. Natl. Acad. Sci. U.S.A. 73, 3433–3437.PubMedCrossRefGoogle Scholar
  25. Kim, K.H., Lopez-Casillas, F., Bai, D.H., Luo, X. & Pape, M.E. (1989) Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 3, 2250–2256PubMedGoogle Scholar
  26. Kristensen, L 0. & Folke, M. (1984) Volume-regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem. J. 221, 265–268.Google Scholar
  27. Lang, F., Stehle, T. & Haussinger, D. (1989) Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflugers Arch. 413, 209–216.PubMedCrossRefGoogle Scholar
  28. Lavoinne, A., Baquet, A. & Hue, L. (1987) Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem. J. 248, 429–437.PubMedGoogle Scholar
  29. McGarry, J.D. & Foster, D.W. (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395–420.PubMedCrossRefGoogle Scholar
  30. McGivan, J.D. & Bradford, N.M. (1977) The transport of branched-chain amino acids into isolated rat liver cells. FEBS Lett. 80, 380–384.PubMedCrossRefGoogle Scholar
  31. Okajima, F. & Katz, J. (1979) Effect of mercaptopicolinic acid and of transaminase inhibitors on glycogen synthesis by rat hepatocytes. Biochem. Biophys. Res. Commun. 87, 155–162.PubMedCrossRefGoogle Scholar
  32. Plomp, P.J.A.M., Boon, L., Caro, L.H.P., van Woerkom, G.M. & Meijer, A.J. (1990) Stimulation of glycogen synthesis in hepatocytes by added amino acids is related to the total intracellular content of amino acids. Eur. J. Biochem 191, 237–243.PubMedCrossRefGoogle Scholar
  33. Roach, P.J. (1990) Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 4, 2961–2968.PubMedGoogle Scholar
  34. Rognstad, R. (1985) Possible role for carbamyl phosphate in the control of liver glycogen synthesis. Biochem. Biophys. Res. Commun. 130, 229–233.PubMedCrossRefGoogle Scholar
  35. Rognstad, R. (1986) Effects of amino acid analogs and amino acid mixture on glycogen synthesis in rat hepatocytes. Biochem. Arch. 2,185–190.Google Scholar
  36. Seglen, P.O. (1974) Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions. Biochim. Biophys. Acta, 338, 317–336.CrossRefGoogle Scholar
  37. Shotwell, M.A., Kilberg, M.S. & Oxender, D.L. (1983) The regulation of neutral amino acid transport in mammalian cells. Biochim. Biophys. Acta, 737, 267–284.PubMedGoogle Scholar
  38. Solanki, K., Moser, U., Nyfeler, F. & Walter, P. (1982) Possible correlation between the stimulation of glycogen synthesis by some amino acids and the synthesis of purines in hepatocytes from starved rats. Experientia, 38, 732.Google Scholar
  39. Stalmans, W. (1976) The role of the liver in the homeostasis of blood glucose. Curr. Top. Cell. Regul. 11,51–97.PubMedGoogle Scholar
  40. Tischler, M.E., Hecht, P. & Williamson, J.R. (1977) Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. Arch. Biochem. Biophys. 181, 278–292.PubMedCrossRefGoogle Scholar
  41. vom Dahl, S., Hallbrucker, C., Lang, F. & Häussinger, D. (1991) Role of eicosanoids, inositol phosphates and extracellular Ca++ in cell-volume regulation of rat liver. Eur. J. Biochem. 198, 73–83.CrossRefGoogle Scholar
  42. Walli, A.K., Siebler, G., Zepf, E. & Schimassek, H. (1974) Glycogen metabolism in isolated perfused rat liver. Hoppe-Sevler’s Z. Physiol. Chem. 355, 353–362.CrossRefGoogle Scholar
  43. Watson, P.A. (1989) Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling. J. Biol. Chem. 264, 14735–14740.PubMedGoogle Scholar
  44. Whitton, P.D. & Hems, D.A. (1975) Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats. Biochem J. 150, 153–165PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Louis Hue
    • 1
  • Arnaud Baquet
    • 1
  • Alain Lavoinne
    • 1
  • Alfred J. Meijer
    • 1
  1. 1.Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular PathologyUniversity of Louvain Medical SchoolBrusselsBelgium

Personalised recommendations